In some industrial plants, wastewater was intermittently or seasonally generated. There may be periods during which wastewater treatment facilities have to be set into an idle phase over several weeks. When wastewater...In some industrial plants, wastewater was intermittently or seasonally generated. There may be periods during which wastewater treatment facilities have to be set into an idle phase over several weeks. When wastewater was generated again, the activated sludge flocs may have disintegrated. In this experiment, re-activation characteristics of aerobic granular sludge starved for 2 months were investigated. Specific oxygen utilization rate(SOUR) was used as an indicator to evaluate the metabolic activity of the sludge. The results revealed that aerobic granular sludge could be stored up to two months without running the risk of losing the integrity of the granules and metabolic potentials. The apparent color of aerobic granules stored at room temperature gradually turned from brownish-yellowish to gray brown. They appeared brownish-yellowish again 2 weeks after re-activation. The velocity and strength of granules after 2-month idle period could be fully restored about 3 weeks after re-activation. Metabolic activity, however, dropped to 15 8 mg O_2/(g MLVSS·h), i.e. 74 % reduction after 2 months of storage. After restarting the reactor, it took 2 weeks that SOUR of up to 48 5 mg O_2 /(g MLVSS·h) was achieved. A stable effluent COD concentration of less than 150 mg/L was achieved during the re-activation process.展开更多
文摘In some industrial plants, wastewater was intermittently or seasonally generated. There may be periods during which wastewater treatment facilities have to be set into an idle phase over several weeks. When wastewater was generated again, the activated sludge flocs may have disintegrated. In this experiment, re-activation characteristics of aerobic granular sludge starved for 2 months were investigated. Specific oxygen utilization rate(SOUR) was used as an indicator to evaluate the metabolic activity of the sludge. The results revealed that aerobic granular sludge could be stored up to two months without running the risk of losing the integrity of the granules and metabolic potentials. The apparent color of aerobic granules stored at room temperature gradually turned from brownish-yellowish to gray brown. They appeared brownish-yellowish again 2 weeks after re-activation. The velocity and strength of granules after 2-month idle period could be fully restored about 3 weeks after re-activation. Metabolic activity, however, dropped to 15 8 mg O_2/(g MLVSS·h), i.e. 74 % reduction after 2 months of storage. After restarting the reactor, it took 2 weeks that SOUR of up to 48 5 mg O_2 /(g MLVSS·h) was achieved. A stable effluent COD concentration of less than 150 mg/L was achieved during the re-activation process.
文摘研究了水力停留时间(HRT)对复合式生物膜-活性污泥工艺处理城市污水效能和反应器中微生物性质的影响.研究结果表明,HRT对系统COD的去除效果影响不大,对氮源污染的影响较大.随着HRT的减少,系统中的污泥质量浓度呈现不断增加的趋势,系统的COD容积去除负荷显著增强.对微生物呼吸速率(OUR)的分析表明,维持较长的HRT能够使反应器内微生物具有更强的活性.因此,建议复合式生物膜-活性污泥工艺合理的HRT的范围为6~8 h.