To allow an easy individuation of the more suitable working conditions (temperature, pressure, flow rate, etc.) to be adopted to carry out the extraction of food grade oils from different substrates by supercritical C...To allow an easy individuation of the more suitable working conditions (temperature, pressure, flow rate, etc.) to be adopted to carry out the extraction of food grade oils from different substrates by supercritical CO2 (Sc-CO2), a simpli- fied kinetic approach has been introduced. This kinetic model was utilised to describe supercritical fluid extraction (SFE) of oil by Sc-CO2 not only from seeds (sunflower, soybean and rape) but also from microalgae (Nannochloropsis sp., Schizochytrium sp. and Spirulina (Arthrospira) platensis) characterised by a lipid fraction with a high proportion of polyunsatured fatty acids (C20:5w-3;C22:6w-3;C18:3w-6). Thanks to the high affinity occurring between oil and Sc-CO2 it was possible to introduce a simplified kinetic model able to describe the time evolution of oil extraction from substrates which deeply differ for biochemical and biophysical characteristics. Moreover the synergistic utilisation of the kinetic model introduced and of the Chrastil’s equation, allowed to predict the time evolution of oil extraction as a function of the: substrate used;amount of its fat content;mass of substrate charged inside the extractor;possible pre- treatments carried out on the used substrate;flow rate of Sc-CO2;working conditions adopted (temperature, pressure and then Sc-CO2 density).展开更多
基金科技部重点基础研究发展规划项目 ("973")资助 (No .2 0 0 3CB7160 0 6)~~
文摘超临界二氧化碳流体预处理对纤维素超分子结构及纤维素酶催化反应有重要影响。一定含水量的微晶纤维素用SC CO2 在 1 0MPa,5 0℃处理 30min ,其结构发生了有利于进一步被酶解的变化。上述超临界条件单独作用于纤维素酶时 ,并未造成酶催化活力的降低 ;但与纤维素共同进行SC CO2 处理时 ,纤维素酶则失去催化活性 ,但这种处理却能提高纤维素进一步被酶解的效率。一定范围内处理时的酶用量与酶解效率的增加正相关。纤维素的含水量对SC CO2
文摘To allow an easy individuation of the more suitable working conditions (temperature, pressure, flow rate, etc.) to be adopted to carry out the extraction of food grade oils from different substrates by supercritical CO2 (Sc-CO2), a simpli- fied kinetic approach has been introduced. This kinetic model was utilised to describe supercritical fluid extraction (SFE) of oil by Sc-CO2 not only from seeds (sunflower, soybean and rape) but also from microalgae (Nannochloropsis sp., Schizochytrium sp. and Spirulina (Arthrospira) platensis) characterised by a lipid fraction with a high proportion of polyunsatured fatty acids (C20:5w-3;C22:6w-3;C18:3w-6). Thanks to the high affinity occurring between oil and Sc-CO2 it was possible to introduce a simplified kinetic model able to describe the time evolution of oil extraction from substrates which deeply differ for biochemical and biophysical characteristics. Moreover the synergistic utilisation of the kinetic model introduced and of the Chrastil’s equation, allowed to predict the time evolution of oil extraction as a function of the: substrate used;amount of its fat content;mass of substrate charged inside the extractor;possible pre- treatments carried out on the used substrate;flow rate of Sc-CO2;working conditions adopted (temperature, pressure and then Sc-CO2 density).