In this paper, we propose a robust mixture regression model based on the skew scale mixtures of normal distributions (RMR-SSMN) which can accommodate asymmetric, heavy-tailed and contaminated data better. For the vari...In this paper, we propose a robust mixture regression model based on the skew scale mixtures of normal distributions (RMR-SSMN) which can accommodate asymmetric, heavy-tailed and contaminated data better. For the variable selection problem, the penalized likelihood approach with a new combined penalty function which balances the SCAD and l<sub>2</sub> penalty is proposed. The adjusted EM algorithm is presented to get parameter estimates of RMR-SSMN models at a faster convergence rate. As simulations show, our mixture models are more robust than general FMR models and the new combined penalty function outperforms SCAD for variable selection. Finally, the proposed methodology and algorithm are applied to a real data set and achieve reasonable results.展开更多
This paper discusses the asymptotic properties of the SCAD(smoothing clipped absolute deviation)penalized quasi-likelihood estimator for generalized linear models with adaptive designs,which extend the related results...This paper discusses the asymptotic properties of the SCAD(smoothing clipped absolute deviation)penalized quasi-likelihood estimator for generalized linear models with adaptive designs,which extend the related results for independent observations to dependent observations.Under certain conditions,the authors proved that the SCAD penalized method correctly selects covariates with nonzero coefficients with probability converging to one,and the penalized quasi-likelihood estimators of non-zero coefficients have the same asymptotic distribution they would have if the zero coefficients were known in advance.That is,the SCAD estimator has consistency and oracle properties.At last,the results are illustrated by some simulations.展开更多
In this paper, we consider the issue of variable selection in partial linear single-index models under the assumption that the vector of regression coefficients is sparse. We apply penalized spline to estimate the non...In this paper, we consider the issue of variable selection in partial linear single-index models under the assumption that the vector of regression coefficients is sparse. We apply penalized spline to estimate the nonparametric function and SCAD penalty to achieve sparse estimates of regression parameters in both the linear and single-index parts of the model. Under some mild conditions, it is shown that the penalized estimators have oracle property, in the sense that it is asymptotically normal with the same mean and covariance that they would have if zero coefficients are known in advance. Our model owns a least square representation, therefore standard least square programming algorithms can be implemented without extra programming efforts. In the meantime, parametric estimation, variable selection and nonparametric estimation can be realized in one step, which incredibly increases computational stability. The finite sample performance of the penalized estimators is evaluated through Monte Carlo studies and illustrated with a real data set.展开更多
文摘In this paper, we propose a robust mixture regression model based on the skew scale mixtures of normal distributions (RMR-SSMN) which can accommodate asymmetric, heavy-tailed and contaminated data better. For the variable selection problem, the penalized likelihood approach with a new combined penalty function which balances the SCAD and l<sub>2</sub> penalty is proposed. The adjusted EM algorithm is presented to get parameter estimates of RMR-SSMN models at a faster convergence rate. As simulations show, our mixture models are more robust than general FMR models and the new combined penalty function outperforms SCAD for variable selection. Finally, the proposed methodology and algorithm are applied to a real data set and achieve reasonable results.
基金the National Social Science Foundation of China under Grant No.18BTJ040。
文摘This paper discusses the asymptotic properties of the SCAD(smoothing clipped absolute deviation)penalized quasi-likelihood estimator for generalized linear models with adaptive designs,which extend the related results for independent observations to dependent observations.Under certain conditions,the authors proved that the SCAD penalized method correctly selects covariates with nonzero coefficients with probability converging to one,and the penalized quasi-likelihood estimators of non-zero coefficients have the same asymptotic distribution they would have if the zero coefficients were known in advance.That is,the SCAD estimator has consistency and oracle properties.At last,the results are illustrated by some simulations.
基金Supported by the National Natural Science Foundation of China(No.11671096)
文摘In this paper, we consider the issue of variable selection in partial linear single-index models under the assumption that the vector of regression coefficients is sparse. We apply penalized spline to estimate the nonparametric function and SCAD penalty to achieve sparse estimates of regression parameters in both the linear and single-index parts of the model. Under some mild conditions, it is shown that the penalized estimators have oracle property, in the sense that it is asymptotically normal with the same mean and covariance that they would have if zero coefficients are known in advance. Our model owns a least square representation, therefore standard least square programming algorithms can be implemented without extra programming efforts. In the meantime, parametric estimation, variable selection and nonparametric estimation can be realized in one step, which incredibly increases computational stability. The finite sample performance of the penalized estimators is evaluated through Monte Carlo studies and illustrated with a real data set.