In order to solve the problem of the maze precision fertilizer,soil fertility evaluation,soil fertility classify and yield projections,the geographic information system with spatial information processing functions,sp...In order to solve the problem of the maze precision fertilizer,soil fertility evaluation,soil fertility classify and yield projections,the geographic information system with spatial information processing functions,spatial data mining techniques with spatial information analysis capabilities,expert system technology in the field of artificial intelligence,traditional information management systems and decision support system were effectively integrated in this study,and the statistical analysis method of GIS and data visualization were combined to design and implement the maize precise intelligent space decision-making system.This system had greatly improved the decision-making ability in agricultural production carried out by agricultural management.展开更多
On the bas is of the reality of material supply management of the coal enterprise, this paper expounds plans of material management systems based on specific IT, and indicates the deficiencies, the problems of them an...On the bas is of the reality of material supply management of the coal enterprise, this paper expounds plans of material management systems based on specific IT, and indicates the deficiencies, the problems of them and the necessity of improving them. The structure, models and data organizing schema of the material management decision support system are investigated based on a new data management technology (data warehousing technology).展开更多
The framework of the assistant decision support system of cross-regional rural labor flow is established,the system combines the cross-regional rural labor flow with DSS,which provides the leaders with the maximum ass...The framework of the assistant decision support system of cross-regional rural labor flow is established,the system combines the cross-regional rural labor flow with DSS,which provides the leaders with the maximum assistant decision-making function in the regulation and guidance of rural labors as well as in relevant programs.The assistant decision support system functions are discussed,the function modules of this system are introduced from four aspects,including the analysis of labor flow,the prediction of labor flow,the regulation of cross-regional flow and the configuration of decision support system;based on the data base obtained from dynamic tracking of the migrant workers and combining other data sources,the data warehouse model is established,for example,in the analysis of the labor migration times,a star multi-dimensional data model is designed from the time dimension,place dimension,the type of work dimension,accompaniers dimension and so on;the trans-regional flow of rural labor force is analyzed and predicted by using OLAP from the labor's migration times,migration places and other various perspectives.The operation principles of the assistant decision support system of trans-regional labor flow are introduced,it is pointed out that the system serves the policy-makers of the regulation of labor flow and other relevant enterprises,the system will play an important role in the tracking monitoring and cross-regional regulation of the rural labor flow.展开更多
This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical ...This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model.展开更多
Large amounts of documents are exchanged during the construction phase of projects, which covers the important management information. To utilize the exchanged documents to support decisionmaking of the management sta...Large amounts of documents are exchanged during the construction phase of projects, which covers the important management information. To utilize the exchanged documents to support decisionmaking of the management staffs, the requirement analysis was carried out based on the interviews to the practitioners. A decision support system called Explyzer+ was developed based on the previous prototype system Explyzer. The latter was enhanced by adding the functions to automate the whole process and the techniques of data mining including decision tree analysis and clustering analysis. A case study for in-depth information analysis was conducted based on the data obtained from a large construction project to demonstrate its feasibility and effectiveness. The system could effectively assist the management staffs to carry out in-depth information analysis for decision-making in construction projects.展开更多
The technological evolution emerges a unified (Industrial) Internet of Things network, where loosely coupled smart manufacturing devices build smart manufacturing systems and enable comprehensive collaboration possibi...The technological evolution emerges a unified (Industrial) Internet of Things network, where loosely coupled smart manufacturing devices build smart manufacturing systems and enable comprehensive collaboration possibilities that increase the dynamic and volatility of their ecosystems. On the one hand, this evolution generates a huge field for exploitation, but on the other hand also increases complexity including new challenges and requirements demanding for new approaches in several issues. One challenge is the analysis of such systems that generate huge amounts of (continuously generated) data, potentially containing valuable information useful for several use cases, such as knowledge generation, key performance indicator (KPI) optimization, diagnosis, predication, feedback to design or decision support. This work presents a review of Big Data analysis in smart manufacturing systems. It includes the status quo in research, innovation and development, next challenges, and a comprehensive list of potential use cases and exploitation possibilities.展开更多
基金Supported by National"863"High-tech Project(2006AA10A309)Jilin Technology Gallery Key Project(20060213)~~
文摘In order to solve the problem of the maze precision fertilizer,soil fertility evaluation,soil fertility classify and yield projections,the geographic information system with spatial information processing functions,spatial data mining techniques with spatial information analysis capabilities,expert system technology in the field of artificial intelligence,traditional information management systems and decision support system were effectively integrated in this study,and the statistical analysis method of GIS and data visualization were combined to design and implement the maize precise intelligent space decision-making system.This system had greatly improved the decision-making ability in agricultural production carried out by agricultural management.
文摘On the bas is of the reality of material supply management of the coal enterprise, this paper expounds plans of material management systems based on specific IT, and indicates the deficiencies, the problems of them and the necessity of improving them. The structure, models and data organizing schema of the material management decision support system are investigated based on a new data management technology (data warehousing technology).
基金Supported by the National Science & Technology Pillar Program(2006BAJ07B07)
文摘The framework of the assistant decision support system of cross-regional rural labor flow is established,the system combines the cross-regional rural labor flow with DSS,which provides the leaders with the maximum assistant decision-making function in the regulation and guidance of rural labors as well as in relevant programs.The assistant decision support system functions are discussed,the function modules of this system are introduced from four aspects,including the analysis of labor flow,the prediction of labor flow,the regulation of cross-regional flow and the configuration of decision support system;based on the data base obtained from dynamic tracking of the migrant workers and combining other data sources,the data warehouse model is established,for example,in the analysis of the labor migration times,a star multi-dimensional data model is designed from the time dimension,place dimension,the type of work dimension,accompaniers dimension and so on;the trans-regional flow of rural labor force is analyzed and predicted by using OLAP from the labor's migration times,migration places and other various perspectives.The operation principles of the assistant decision support system of trans-regional labor flow are introduced,it is pointed out that the system serves the policy-makers of the regulation of labor flow and other relevant enterprises,the system will play an important role in the tracking monitoring and cross-regional regulation of the rural labor flow.
文摘This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model.
基金the National Technological Promotion Program for the 10th-Five-Year Plan of China (No. 2004BA209B04)
文摘Large amounts of documents are exchanged during the construction phase of projects, which covers the important management information. To utilize the exchanged documents to support decisionmaking of the management staffs, the requirement analysis was carried out based on the interviews to the practitioners. A decision support system called Explyzer+ was developed based on the previous prototype system Explyzer. The latter was enhanced by adding the functions to automate the whole process and the techniques of data mining including decision tree analysis and clustering analysis. A case study for in-depth information analysis was conducted based on the data obtained from a large construction project to demonstrate its feasibility and effectiveness. The system could effectively assist the management staffs to carry out in-depth information analysis for decision-making in construction projects.
文摘The technological evolution emerges a unified (Industrial) Internet of Things network, where loosely coupled smart manufacturing devices build smart manufacturing systems and enable comprehensive collaboration possibilities that increase the dynamic and volatility of their ecosystems. On the one hand, this evolution generates a huge field for exploitation, but on the other hand also increases complexity including new challenges and requirements demanding for new approaches in several issues. One challenge is the analysis of such systems that generate huge amounts of (continuously generated) data, potentially containing valuable information useful for several use cases, such as knowledge generation, key performance indicator (KPI) optimization, diagnosis, predication, feedback to design or decision support. This work presents a review of Big Data analysis in smart manufacturing systems. It includes the status quo in research, innovation and development, next challenges, and a comprehensive list of potential use cases and exploitation possibilities.