Sinocalycanthus chmensis, an endangered species endemic to China, is cultivated as an omamental landscape tree in China. However, S. chinensis, Chimonanthus species and Calycanthusfloridus are difficult to be distingu...Sinocalycanthus chmensis, an endangered species endemic to China, is cultivated as an omamental landscape tree in China. However, S. chinensis, Chimonanthus species and Calycanthusfloridus are difficult to be distinguished in seedling market because of their similar morphological characters. In this study, ISSR (inter-simple sequence repeats) were applied to detect S. chinensis from its closely related species. A unique 748-bp band was found in all accessions of S. chinensis. SCAR (sequence characterized amplified regions) markers were created by cloning and sequencing the specific band, and designing a pair of primers to amplify the band of 748 bp. Diagnostic PCRs were performed using the primer pair with the total DNAs ofS. chinensis, Chimonanthus species and C. floridus as templates, with only S. chinensis being able to be amplified. This amplification is not only rapid (results can be obtained in less than 3 h), but is also easy to perform. Hence it is a feasible method for identifying S. chmensis in seedling market.展开更多
61 varieties of wheat collected in the gene fund of the Research Institute of Crop Husbandry were screened using SCAR-markers associated with the gene of resistance to brown leaf rust, Lr19. As a result of PCR analysi...61 varieties of wheat collected in the gene fund of the Research Institute of Crop Husbandry were screened using SCAR-markers associated with the gene of resistance to brown leaf rust, Lr19. As a result of PCR analysis using SCS123 marker the 737 bp locus was detected in 48 genotypes. The expected fragment of the 688 bp was detected in 53 genotypes using the SCS253 marker. The results obtained using both markers indicate that the Lr19 gene is present on 7D chromosomes of 45 genotypes. The existence of the Lr19 gene has not been proven only for 5 from the 61 analyzed wheat genotypes.展开更多
Universally Primed PCR (UP-PCR) is a PCR fingerprinting method that has demonstrated its applicability in different aspects of mycology. These applications constitute analysis of genome structures, identification of s...Universally Primed PCR (UP-PCR) is a PCR fingerprinting method that has demonstrated its applicability in different aspects of mycology. These applications constitute analysis of genome structures, identification of species, analysis of population and species diversity, revealing of genetic relatedness at infra-and inter-species level, and identification of UP-PCR markers at different taxonomic levels (strain, group and/or species) . A further development of the UP-PCR technique is an UP-PCR product cross hybridisation assay that facilitates investigation of sequence similarity (homology) of UP-PCR products and grouping of strains into UP-PCR hybridisation groups. This separates the strains into entities with high genetic similarity (DNA homology) . UP-PCR has been used as an aid in taxonomy and species delineation, and to monitor biocontrol strains following their release into the environment by fingerprint characterisation of pure cultures and through direct detection in soil by amplification of UP-PCR-derived SCAR markers. The technique has been applied to Trichoderma strains in particularly with the aims of strain recognition and classification.展开更多
基金Project (No. G2000046806) supported by the National Basic Research Program (973) of China
文摘Sinocalycanthus chmensis, an endangered species endemic to China, is cultivated as an omamental landscape tree in China. However, S. chinensis, Chimonanthus species and Calycanthusfloridus are difficult to be distinguished in seedling market because of their similar morphological characters. In this study, ISSR (inter-simple sequence repeats) were applied to detect S. chinensis from its closely related species. A unique 748-bp band was found in all accessions of S. chinensis. SCAR (sequence characterized amplified regions) markers were created by cloning and sequencing the specific band, and designing a pair of primers to amplify the band of 748 bp. Diagnostic PCRs were performed using the primer pair with the total DNAs ofS. chinensis, Chimonanthus species and C. floridus as templates, with only S. chinensis being able to be amplified. This amplification is not only rapid (results can be obtained in less than 3 h), but is also easy to perform. Hence it is a feasible method for identifying S. chmensis in seedling market.
文摘61 varieties of wheat collected in the gene fund of the Research Institute of Crop Husbandry were screened using SCAR-markers associated with the gene of resistance to brown leaf rust, Lr19. As a result of PCR analysis using SCS123 marker the 737 bp locus was detected in 48 genotypes. The expected fragment of the 688 bp was detected in 53 genotypes using the SCS253 marker. The results obtained using both markers indicate that the Lr19 gene is present on 7D chromosomes of 45 genotypes. The existence of the Lr19 gene has not been proven only for 5 from the 61 analyzed wheat genotypes.
文摘Universally Primed PCR (UP-PCR) is a PCR fingerprinting method that has demonstrated its applicability in different aspects of mycology. These applications constitute analysis of genome structures, identification of species, analysis of population and species diversity, revealing of genetic relatedness at infra-and inter-species level, and identification of UP-PCR markers at different taxonomic levels (strain, group and/or species) . A further development of the UP-PCR technique is an UP-PCR product cross hybridisation assay that facilitates investigation of sequence similarity (homology) of UP-PCR products and grouping of strains into UP-PCR hybridisation groups. This separates the strains into entities with high genetic similarity (DNA homology) . UP-PCR has been used as an aid in taxonomy and species delineation, and to monitor biocontrol strains following their release into the environment by fingerprint characterisation of pure cultures and through direct detection in soil by amplification of UP-PCR-derived SCAR markers. The technique has been applied to Trichoderma strains in particularly with the aims of strain recognition and classification.