Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption,...Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy.展开更多
In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of A...In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.展开更多
BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patie...BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain.展开更多
BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchym...BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchymal stem cells(NPMSCs)and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs(IVDs).Quercetin(Que)has been demonstrated to reduce oxidative stress in diverse degenerative diseases.AIM To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.METHODS In vitro,NPMSCs were isolated from rat tails.Senescence-associatedβ-galactosidase(SA-β-Gal)staining,cell cycle,reactive oxygen species(ROS),realtime quantitative polymerase chain reaction(RT-qPCR),immunofluorescence,and western blot analyses were used to evaluated the protective effects of Que.Meanwhile the relationship between miR-34a-5p and Sirtuins 1(SIRT1)was evaluated by dual-luciferase reporter assay.To explore whether Que modulates tert-butyl hydroperoxide(TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway,we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression.In vivo,a puncture-induced rat IDD model was constructed,and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.RESULTS We found that TBHP can cause NPMSCs senescence changes,such as reduced cell proliferation ability,increased SA-β-Gal activity,cell cycle arrest,the accumulation of ROS,and increased expression of senescence-related proteins.While abovementioned senescence indicators were significantly alleviated by Que treatment.Que decreased the expression levels of senescence-related proteins(p16,p21,and p53)and senescence-associated secreted phenotype(SASP),including IL-1β,IL-6,and MMP-13,and it increased the expression of SIRT1.In addition,the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown.In vivo,X-ray,and histological analyses indicated that Que alleviated IDD in a punctureinduced rat model.CONCLUSION In summary,the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway,suggesting that Que may be a potential agent for the treatment of IDD.展开更多
Objective:To investigate the effect of exosomes secreted by decidual macrophages on trophoblast cells and their molecular mechanism.Methods:The decidual tissues of patients with preeclampsia(PE)and normal-term pregnan...Objective:To investigate the effect of exosomes secreted by decidual macrophages on trophoblast cells and their molecular mechanism.Methods:The decidual tissues of patients with preeclampsia(PE)and normal-term pregnant women were collected.Macrophages were obtained by the density gradient method and then flow cell sorting,then the exosomes were extracted.The structure of the exosomes was observed by transmission electron microscope.The expression of CD63,a marker protein of the exocrine body,was detected by western blot,and the exosomes were identified.CCK-8 was used to detect the effect of exosomes on trophoblast cell viability.Transwell migration experiment was used to detect the influence on migration ability.The expression of miR-146a-5p in exosomes was detected by qPCR.The effect of exosomes on the expression of HIF1αprotein in trophoblasts was detected by western blot and detection of the binding site between miR-146a-5p and HIF1αby double luciferase reporter gene was conducted.Results:The exosomes of macrophages present a"cake"structure with a middle depression about 30-130 nm in diameter,and CD63 is highly expressed,which conforms to the characteristics of exosomes.Compared with the normal group,the exosomes of decidual macrophages in the PE group inhibited the activity and migration of trophoblast cells(P<0.001).The expression of miR-146a-5p in the exosomes of decidual macrophages in the PE decreased significantly,and after exosomes of PE decidual macrophages treating trophoblast cells,the protein expression of HIF1αin trophoblast cells was significantly increased.There are targeted binding sites between miR-146a-5p and HIF1α.Conclusion:PE decidual macrophage exosomes can inhibit the viability and migration of trophoblast cells,which may be related to the decreased expression of miR-146a-5p in exosomes,thus promoting HIF1αprotein expression of trophoblast cells.展开更多
背景:溶质载体家族1成员5(solute carrier family 1 member 5,SLC1A5)在多种疾病中发挥了潜在作用,但确切作用机制尚不清楚。构建稳定的SLC1A5过表达和敲低细胞模型可为深入研究SLC1A5在疾病中的确切作用机制以及发现潜在治疗靶点提供...背景:溶质载体家族1成员5(solute carrier family 1 member 5,SLC1A5)在多种疾病中发挥了潜在作用,但确切作用机制尚不清楚。构建稳定的SLC1A5过表达和敲低细胞模型可为深入研究SLC1A5在疾病中的确切作用机制以及发现潜在治疗靶点提供有力的实验工具。目的:构建小鼠SLC1A5过表达和敲低的慢病毒载体,以建立稳定转染的RAW264.7细胞株,为深入探讨SLC1A5在炎症中的作用提供实验基础。方法:根据SLC1A5基因序列设计合成引物并使用聚合酶链反应扩增该基因片段。将目的基因定向接入经Age I/Nhe I酶切的载体质粒GV492中构建重组慢病毒质粒,对阳性克隆进一步筛选后测序比对结果;pHelper1.0质粒载体、pHelper2.0质粒载体、目的质粒载体与293T细胞共同培养并转染,获得慢病毒原液进行包装和滴度测定;在此基础上,通过体外培养RAW264.7细胞,确定嘌呤霉素工作质量浓度;不同滴度的慢病毒分别与RAW264.7细胞共同培养,根据荧光强度确定转染效率;用嘌呤霉素挑选出稳定转染细胞,实时荧光定量聚合酶链反应和蛋白免疫印迹方法检测稳定转染细胞株的SLC1A5基因和蛋白表达水平。结果与结论:(1)测序序列与目的序列一致提示重组慢病毒载体构建成功;(2)过表达SLC1A5慢病毒的滴度为1×10~9 TU/mL,敲低SLC1A5慢病毒的滴度为3×10~9 TU/mL;(3)确定RAW264.7细胞嘌呤霉素工作质量浓度为3μg/mL;(4)过表达/敲低SLC1A5慢病毒转染RAW264.7细胞的最佳条件皆为HiTransG P转染增强液且感染复数值等于50;(5)过表达SLC1A5稳转细胞株中SLC1A5基因和蛋白的表达量明显上调,而敲低SLC1A5稳转细胞株中SLC1A5基因和蛋白的表达量显著下调。结果表明,成功构建了小鼠SLC1A5过表达和敲低的慢病毒载体并获得稳定转染的RAW264.7细胞株。展开更多
Objective:To explore the role of circROBO1 in promoting the invasion of retinal Y79 cells by targeting KLF5 and its possible regulatory mechanism.Methods:RNase R enzyme digestion and qRT-PCR experiments were used to d...Objective:To explore the role of circROBO1 in promoting the invasion of retinal Y79 cells by targeting KLF5 and its possible regulatory mechanism.Methods:RNase R enzyme digestion and qRT-PCR experiments were used to detect the structural stability of circular circROBO1 in retinal Y79 cells;cytoplasmic and nuclear RNAs of retinal Y79 cells were extracted for localization analysis of circROBO1;The expression of circROBO1 in retinal Y79 cells were silenced by siRNA.The effect of circROBO1 on the migration and invasion ability of HT-29 cells was detected by scratch assay,Transwell cell invasion and migration assay.The target binding sites of circROBO1 and its downstream miRNA and that of miRNA and its downstream target gene KLF5 were predicted by CircInteractome and TargetScan online software respectively,and the target regulation relationship between them was verified by double luciferase reporter gene experiment.Western blot was used to detect the effect of siRNA silencing the expression of circROBO1 in Y79 cells on the expression of KLF5.Results:Compared with the control group without RNase R enzyme treatment,relative circROBO1 levels did not change significantly after treatment,while relative linear ROBO1 levels decreased significantly after treatment(t=16.18,P<0.05);the content of circROBO1 in the cytoplasm was significantly higher than that in the nucleus(P<0.05);compared with si-control group,the migration rate and the invasion and migration abilities of Transwell cells were all lower in the si-circROBO1 group(t=22.54,P<0.05);circROBO1 can adsorb miR-885-5p,and there is a target binding site between miR-885-5p and KLF5(t=11.39,P<0.05);compared with the si-control group,the KLF5 protein expression in the si-circROBO1 group was significantly decreased(t=17.26,P<0.05).Conclusions:circROBO1 promotes retinalY79 cell tumor invasion by targeting KLF5.展开更多
Objective To investigate miR-183-5p targeting to forkhead box protein O1(FOXO1)and its corresponding effect on the proliferation,migration,invasion,and epithelial-mesenchymal transition(EMT)of non-small cell lung canc...Objective To investigate miR-183-5p targeting to forkhead box protein O1(FOXO1)and its corresponding effect on the proliferation,migration,invasion,and epithelial-mesenchymal transition(EMT)of non-small cell lung cancer(NSCLC)cells.Methods NSCLC tissues and adjacent normal tissues from 60 patients with NSCLC adenocarcinoma were obtained via pathological biopsy or intraoperative resection.Several cell lines were cultured in vitro,including the human normal lung epithelial cell line BEAS-2B and human NSCLC cell lines A549,SPCA-1,PC-9,and 95-D.miR-183-5p and FOXO1 mRNA expression in tissues and cells were detected by qRT-PCR;the corresponding correlations in NSCLC tissues were analyzed using the Pearson test,and the relationship between miR-183-5p expression and clinicopathological parameters was analyzed.The miR-183-5p-mediated regulation of FOXO1 was verified by bioinformatics prediction alongside double luciferase,RNA-binding protein immunoprecipitation(RIP)assay,and pull-down experiments.A549 cells were divided into control,anti-miR-NC,anti-miR-183-5p,miR-NC,miR-183-5p,miR-183-5p+pcDNA3.1,and miR-183-5p+pcDNA3.1-FOXO1 groups.Cell proliferation,invasion,migration,apoptosis,and cell cycle distribution were detected using an MTT assay,clone formation assay,Transwell assay,scratch test,and flow cytometry,respectively.The expression of EMT-related proteins in the cells was analyzed by western blotting.The effect of miR-185-3p silencing on the development of transplanted tumors was detected by analyzing tumor formation in nude mice.Results miR-183-5p expression was significantly higher in NSCLC tissues and cells than in adjacent normal tissues,whereas FOXO1 mRNA expression was significantly down-regulated.There was a significant negative correlation between miR-183-5p and FOXO1 mRNA in NSCLC tissues(P<0.05).Additionally,the expression of miR-183-5p was significantly correlated with tumor size,tumor differentiation,and tumor-node-metastasis stage in patients with NSCLC(P<0.05).miR-183-5p targeted and inhibited FOXO1 expression.Compared to the anti-miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the anti-miR-183-5p group,whereas the protein expression of E-cadherin andα-catenin and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion were significantly lower in the anti-miR-183-5p group(P<0.05).Compared to the miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells in the miR-183-5p group were significantly higher,whereas the E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly lower;furthermore,the frequency of colony formation and invasion were significantly higher in the miR-183-5p group(P<0.05).Compared with the miR-183-5p+pcDNA3.1 group,the OD value,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group,whereas E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion was significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group(P<0.05).Overall,silencing miR-185-3p inhibited the growth of transplanted tumors and promoted FOXO1 expression.Conclusion Overexpression of miR-183-5p can inhibit apoptosis and promote the proliferation,migration,invasion,and EMT,of NSCLC cells by down-regulating FOXO1 expression.展开更多
AIM To study the role of interleukin 1β converting enzyme (ICE) in antitumor drug induced apoptosis in tumor cells. METHODS Morphological changes in human esophageal carcinoma Eca 109 cells after treated with 5 ...AIM To study the role of interleukin 1β converting enzyme (ICE) in antitumor drug induced apoptosis in tumor cells. METHODS Morphological changes in human esophageal carcinoma Eca 109 cells after treated with 5 fluorouracil (5 FU) were observed under light and electron microscope. Expression of ICE in the tumor cells exposed to 5 FU was examined by the immunocytochemical method. RESULTS The cells treated with 5 FU displayed disappearance of nucleoli, chromatin gathering under nuclear envelope, karyorrhexis, budding and the formation of apoptotic bodies. The expression of ICE was negative in control cells, and 5 FU could induce the ICE expression in Eca 109 cells undergoing apoptosis. The number and the staining intensity of positive cells increased with the extension of action time. CONCLUSION 5 FU may induce apoptosis in human esophageal carcinoma Eca 109 cells; ICE gene may be involved in the regulation of 5 FU induced apoptosis; and ICE protein may mediate apoptosis induced by 5 FU.展开更多
基金Changshu Science and Technology Plan(Social Development)Project(No.CS202130)Key Project of Changshu No.2 People’s Hospital(No.CSEY2021007)。
文摘Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy.
基金supported by STI2030-Major Projects,No.2021ZD 0201801(to JG)Shanxi Province Basic Research Program,No.20210302123429(to QS).
文摘In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.
基金Supported by the National Natural Science Foundation of China,No.81900743Heilongjiang Province Outstanding Young Medical Talents Training Grant Project,China,No.HYD2020YQ0007.
文摘BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain.
基金Supported by the National Natural Science Foundation of China,No.82172462,No.81972136the Traditional Chinese Medicine Science and Technology Development Plan Project of Jiangsu Province,No.YB2020085Cross Cooperation Project of Northern Jiangsu People’s Hospital,No.SBJC21014.
文摘BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchymal stem cells(NPMSCs)and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs(IVDs).Quercetin(Que)has been demonstrated to reduce oxidative stress in diverse degenerative diseases.AIM To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.METHODS In vitro,NPMSCs were isolated from rat tails.Senescence-associatedβ-galactosidase(SA-β-Gal)staining,cell cycle,reactive oxygen species(ROS),realtime quantitative polymerase chain reaction(RT-qPCR),immunofluorescence,and western blot analyses were used to evaluated the protective effects of Que.Meanwhile the relationship between miR-34a-5p and Sirtuins 1(SIRT1)was evaluated by dual-luciferase reporter assay.To explore whether Que modulates tert-butyl hydroperoxide(TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway,we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression.In vivo,a puncture-induced rat IDD model was constructed,and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.RESULTS We found that TBHP can cause NPMSCs senescence changes,such as reduced cell proliferation ability,increased SA-β-Gal activity,cell cycle arrest,the accumulation of ROS,and increased expression of senescence-related proteins.While abovementioned senescence indicators were significantly alleviated by Que treatment.Que decreased the expression levels of senescence-related proteins(p16,p21,and p53)and senescence-associated secreted phenotype(SASP),including IL-1β,IL-6,and MMP-13,and it increased the expression of SIRT1.In addition,the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown.In vivo,X-ray,and histological analyses indicated that Que alleviated IDD in a punctureinduced rat model.CONCLUSION In summary,the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway,suggesting that Que may be a potential agent for the treatment of IDD.
基金Hainan Provincial Natural Science Foundation Project(821MS128,822MS164)Hainan Provincial People's Hospital National Natural Science Foundation Cultivation Project(530)(2021MSXM04)。
文摘Objective:To investigate the effect of exosomes secreted by decidual macrophages on trophoblast cells and their molecular mechanism.Methods:The decidual tissues of patients with preeclampsia(PE)and normal-term pregnant women were collected.Macrophages were obtained by the density gradient method and then flow cell sorting,then the exosomes were extracted.The structure of the exosomes was observed by transmission electron microscope.The expression of CD63,a marker protein of the exocrine body,was detected by western blot,and the exosomes were identified.CCK-8 was used to detect the effect of exosomes on trophoblast cell viability.Transwell migration experiment was used to detect the influence on migration ability.The expression of miR-146a-5p in exosomes was detected by qPCR.The effect of exosomes on the expression of HIF1αprotein in trophoblasts was detected by western blot and detection of the binding site between miR-146a-5p and HIF1αby double luciferase reporter gene was conducted.Results:The exosomes of macrophages present a"cake"structure with a middle depression about 30-130 nm in diameter,and CD63 is highly expressed,which conforms to the characteristics of exosomes.Compared with the normal group,the exosomes of decidual macrophages in the PE group inhibited the activity and migration of trophoblast cells(P<0.001).The expression of miR-146a-5p in the exosomes of decidual macrophages in the PE decreased significantly,and after exosomes of PE decidual macrophages treating trophoblast cells,the protein expression of HIF1αin trophoblast cells was significantly increased.There are targeted binding sites between miR-146a-5p and HIF1α.Conclusion:PE decidual macrophage exosomes can inhibit the viability and migration of trophoblast cells,which may be related to the decreased expression of miR-146a-5p in exosomes,thus promoting HIF1αprotein expression of trophoblast cells.
基金Key Project of Hunan Provincial Department of Education(No.21A0285)。
文摘Objective:To explore the role of circROBO1 in promoting the invasion of retinal Y79 cells by targeting KLF5 and its possible regulatory mechanism.Methods:RNase R enzyme digestion and qRT-PCR experiments were used to detect the structural stability of circular circROBO1 in retinal Y79 cells;cytoplasmic and nuclear RNAs of retinal Y79 cells were extracted for localization analysis of circROBO1;The expression of circROBO1 in retinal Y79 cells were silenced by siRNA.The effect of circROBO1 on the migration and invasion ability of HT-29 cells was detected by scratch assay,Transwell cell invasion and migration assay.The target binding sites of circROBO1 and its downstream miRNA and that of miRNA and its downstream target gene KLF5 were predicted by CircInteractome and TargetScan online software respectively,and the target regulation relationship between them was verified by double luciferase reporter gene experiment.Western blot was used to detect the effect of siRNA silencing the expression of circROBO1 in Y79 cells on the expression of KLF5.Results:Compared with the control group without RNase R enzyme treatment,relative circROBO1 levels did not change significantly after treatment,while relative linear ROBO1 levels decreased significantly after treatment(t=16.18,P<0.05);the content of circROBO1 in the cytoplasm was significantly higher than that in the nucleus(P<0.05);compared with si-control group,the migration rate and the invasion and migration abilities of Transwell cells were all lower in the si-circROBO1 group(t=22.54,P<0.05);circROBO1 can adsorb miR-885-5p,and there is a target binding site between miR-885-5p and KLF5(t=11.39,P<0.05);compared with the si-control group,the KLF5 protein expression in the si-circROBO1 group was significantly decreased(t=17.26,P<0.05).Conclusions:circROBO1 promotes retinalY79 cell tumor invasion by targeting KLF5.
文摘Objective To investigate miR-183-5p targeting to forkhead box protein O1(FOXO1)and its corresponding effect on the proliferation,migration,invasion,and epithelial-mesenchymal transition(EMT)of non-small cell lung cancer(NSCLC)cells.Methods NSCLC tissues and adjacent normal tissues from 60 patients with NSCLC adenocarcinoma were obtained via pathological biopsy or intraoperative resection.Several cell lines were cultured in vitro,including the human normal lung epithelial cell line BEAS-2B and human NSCLC cell lines A549,SPCA-1,PC-9,and 95-D.miR-183-5p and FOXO1 mRNA expression in tissues and cells were detected by qRT-PCR;the corresponding correlations in NSCLC tissues were analyzed using the Pearson test,and the relationship between miR-183-5p expression and clinicopathological parameters was analyzed.The miR-183-5p-mediated regulation of FOXO1 was verified by bioinformatics prediction alongside double luciferase,RNA-binding protein immunoprecipitation(RIP)assay,and pull-down experiments.A549 cells were divided into control,anti-miR-NC,anti-miR-183-5p,miR-NC,miR-183-5p,miR-183-5p+pcDNA3.1,and miR-183-5p+pcDNA3.1-FOXO1 groups.Cell proliferation,invasion,migration,apoptosis,and cell cycle distribution were detected using an MTT assay,clone formation assay,Transwell assay,scratch test,and flow cytometry,respectively.The expression of EMT-related proteins in the cells was analyzed by western blotting.The effect of miR-185-3p silencing on the development of transplanted tumors was detected by analyzing tumor formation in nude mice.Results miR-183-5p expression was significantly higher in NSCLC tissues and cells than in adjacent normal tissues,whereas FOXO1 mRNA expression was significantly down-regulated.There was a significant negative correlation between miR-183-5p and FOXO1 mRNA in NSCLC tissues(P<0.05).Additionally,the expression of miR-183-5p was significantly correlated with tumor size,tumor differentiation,and tumor-node-metastasis stage in patients with NSCLC(P<0.05).miR-183-5p targeted and inhibited FOXO1 expression.Compared to the anti-miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the anti-miR-183-5p group,whereas the protein expression of E-cadherin andα-catenin and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion were significantly lower in the anti-miR-183-5p group(P<0.05).Compared to the miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells in the miR-183-5p group were significantly higher,whereas the E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly lower;furthermore,the frequency of colony formation and invasion were significantly higher in the miR-183-5p group(P<0.05).Compared with the miR-183-5p+pcDNA3.1 group,the OD value,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group,whereas E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion was significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group(P<0.05).Overall,silencing miR-185-3p inhibited the growth of transplanted tumors and promoted FOXO1 expression.Conclusion Overexpression of miR-183-5p can inhibit apoptosis and promote the proliferation,migration,invasion,and EMT,of NSCLC cells by down-regulating FOXO1 expression.
文摘AIM To study the role of interleukin 1β converting enzyme (ICE) in antitumor drug induced apoptosis in tumor cells. METHODS Morphological changes in human esophageal carcinoma Eca 109 cells after treated with 5 fluorouracil (5 FU) were observed under light and electron microscope. Expression of ICE in the tumor cells exposed to 5 FU was examined by the immunocytochemical method. RESULTS The cells treated with 5 FU displayed disappearance of nucleoli, chromatin gathering under nuclear envelope, karyorrhexis, budding and the formation of apoptotic bodies. The expression of ICE was negative in control cells, and 5 FU could induce the ICE expression in Eca 109 cells undergoing apoptosis. The number and the staining intensity of positive cells increased with the extension of action time. CONCLUSION 5 FU may induce apoptosis in human esophageal carcinoma Eca 109 cells; ICE gene may be involved in the regulation of 5 FU induced apoptosis; and ICE protein may mediate apoptosis induced by 5 FU.