Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser...Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser detector and a soft-input soft-output(SISO) successive cancellation(SC) polar decoder. In particular, the SISO polar decoding process is realized by a specifically designed soft re-encoder, which is concatenated to the original SC decoder. This soft re-encoder is capable of reconstructing the soft information of the entire polar codeword based on previously detected log-likelihood ratios(LLRs) of information bits. Benefiting from the soft re-encoding algorithm, the resultant iterative detection strategy is able to obtain a salient coding gain. Our simulation results demonstrate that significant improvement in error performance is achieved by the proposed polar-coded SCMA in additive white Gaussian noise(AWGN) channels, where the performance of the conventional SISO belief propagation(BP) polar decoder aided SCMA, the turbo coded SCMA and the low-density parity-check(LDPC) coded SCMA are employed as benchmarks.展开更多
Sparse code multiple access(SCMA) is a novel non-orthogonal multiple access technology considered as a key component in 5G air interface design. In SCMA, the incoming bits are directly mapped to multi-dimensional cons...Sparse code multiple access(SCMA) is a novel non-orthogonal multiple access technology considered as a key component in 5G air interface design. In SCMA, the incoming bits are directly mapped to multi-dimensional constellation vectors known as SCMA codewords, which are then mapped onto blocks of physical resource elements in a sparse manner. The number of codewords that can be non-orthogonally multiplexed in each SCMA block is much larger than the number of resource elements therein, so the system is overloaded and can support larger number of users. The joint optimization of multi-dimensional modulation and low density spreading in SCMA codebook design ensures the SCMA receiver to recover the coded bits with high reliability and low complexity. The flexibility in design and the robustness in performance further prove SCMA to be a promising technology to meet the 5G communication demands such as massive connectivity and low latency transmissions.展开更多
In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical s...In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.展开更多
Both high-dense wireless connectivity and ultra-huge network capacity are main challenges of next generation broadband networks.As one of its key promising technologies,non-orthogonal multi-ple access(NOMA)scheme can ...Both high-dense wireless connectivity and ultra-huge network capacity are main challenges of next generation broadband networks.As one of its key promising technologies,non-orthogonal multi-ple access(NOMA)scheme can solve those challenges and meet those needs to some extent,in the way that different user equipments(UEs)multiplex on the same resource.Researchers around the world have presented numerous NOMA solutions.Among those,sparse code multiple access(SC-MA)technology is a typical NOMA solution.It supports scheduled access and random access which can be called granted access and grant-free access respectively.But resources allocated to granted UEs and grant-free UEs are strictly separated.In order to improve resource utilization,a hybrid non-orthogonal multiple access scheme is proposed.It allows granted UEs and grant-free UEs sharing the same resource unit in terms of fine-grained integration.On the basis,a resource allocation method is further brought forward based on genetic algorithm.It optimizes resource allocation of all UEs by mapping resource distribution issue to an optimization problem.Comparing throughputs of four meth-ods,simulation results demonstrate the proposed genetic algorithm has better throughput gain.展开更多
基金supported in part by National Natural Science Foundation of China (no. 61571373, no. 61501383, no. U1734209, no. U1709219)in part by Key International Cooperation Project of Sichuan Province (no. 2017HH0002)+2 种基金in part by Marie Curie Fellowship (no. 792406)in part by the National Science and Technology Major Project under Grant 2016ZX03001018-002in part by NSFC China-Swedish project (no. 6161101297)
文摘Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser detector and a soft-input soft-output(SISO) successive cancellation(SC) polar decoder. In particular, the SISO polar decoding process is realized by a specifically designed soft re-encoder, which is concatenated to the original SC decoder. This soft re-encoder is capable of reconstructing the soft information of the entire polar codeword based on previously detected log-likelihood ratios(LLRs) of information bits. Benefiting from the soft re-encoding algorithm, the resultant iterative detection strategy is able to obtain a salient coding gain. Our simulation results demonstrate that significant improvement in error performance is achieved by the proposed polar-coded SCMA in additive white Gaussian noise(AWGN) channels, where the performance of the conventional SISO belief propagation(BP) polar decoder aided SCMA, the turbo coded SCMA and the low-density parity-check(LDPC) coded SCMA are employed as benchmarks.
基金supported by the National Basic Research Program of China(973 Program 2012CB316000)the National Major Projects of China(2015ZX03002010)
文摘Sparse code multiple access(SCMA) is a novel non-orthogonal multiple access technology considered as a key component in 5G air interface design. In SCMA, the incoming bits are directly mapped to multi-dimensional constellation vectors known as SCMA codewords, which are then mapped onto blocks of physical resource elements in a sparse manner. The number of codewords that can be non-orthogonally multiplexed in each SCMA block is much larger than the number of resource elements therein, so the system is overloaded and can support larger number of users. The joint optimization of multi-dimensional modulation and low density spreading in SCMA codebook design ensures the SCMA receiver to recover the coded bits with high reliability and low complexity. The flexibility in design and the robustness in performance further prove SCMA to be a promising technology to meet the 5G communication demands such as massive connectivity and low latency transmissions.
文摘In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.
基金Supported by the National Natural Science Foundation of China(No.61871322,61771392,61771390,61501373,61271279)the National Science and Technology Major Special Project(2016ZX03001018-004).
文摘Both high-dense wireless connectivity and ultra-huge network capacity are main challenges of next generation broadband networks.As one of its key promising technologies,non-orthogonal multi-ple access(NOMA)scheme can solve those challenges and meet those needs to some extent,in the way that different user equipments(UEs)multiplex on the same resource.Researchers around the world have presented numerous NOMA solutions.Among those,sparse code multiple access(SC-MA)technology is a typical NOMA solution.It supports scheduled access and random access which can be called granted access and grant-free access respectively.But resources allocated to granted UEs and grant-free UEs are strictly separated.In order to improve resource utilization,a hybrid non-orthogonal multiple access scheme is proposed.It allows granted UEs and grant-free UEs sharing the same resource unit in terms of fine-grained integration.On the basis,a resource allocation method is further brought forward based on genetic algorithm.It optimizes resource allocation of all UEs by mapping resource distribution issue to an optimization problem.Comparing throughputs of four meth-ods,simulation results demonstrate the proposed genetic algorithm has better throughput gain.
文摘针对稀疏码分多址(sparse code multiple access,SCMA)在过载条件下比特错误概率(bit error ratio,BER)较高的问题,首先分析了SCMA码本设计过程中的相位旋转角度对系统性能的影响,然后从控制合成星座图上星座点的相对距离的角度,提出了两种优化相位旋转角度的方案:基于最大化最小欧式距离的旋转(rotation based on maximizing minimum euclidean distance,M-rotation)方案和基于指数平均的旋转(rotation based on exponential average,E-rotation)方案。在BER方面,E-rotation方案整体性能较好,但在高信噪比条件下(signal-tonoise ratio,SNR)条件下,M-rotation方案表现出更优异的性能;在译码复杂度方面,两种方案对原始消息传递算法(message passing algorithm,MPA)的译码复杂度无影响,但采用E-rotation方案时,接收端采用PEIT-MPA,译码复杂度更低。