Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields,for instance,smart healthcare,emergency rescue,soldier positioning et al.The perfo...Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields,for instance,smart healthcare,emergency rescue,soldier positioning et al.The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors,disturbed local magnetic field,and complex motion modes of the pedestrian.This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE)framework,which can be applied for long-term navigation tasks.A Bi-directional Long Short-Term Memory(Bi-LSTM)based quasi-static magnetic field(QSMF)detection algorithm is developed for extracting useful magnetic observation for heading calibration,and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period.In addition,a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks,and enhanced by the magnetic and trajectory features assisted loop detection algorithm.Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms,and final estimated heading and positioning accuracy indexes reaches 5and less than 2 m under the time period of 30 min,respectively.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
This paper presents the hypermedia data model based on the infinity RS image information system we have developed.The hypermedia data model consists of different semantic units called nodes,and the associations betwee...This paper presents the hypermedia data model based on the infinity RS image information system we have developed.The hypermedia data model consists of different semantic units called nodes,and the associations between nodes are called links.This paper proposes three kinds of nodes (interior node,physical node and complex node) and two kinds of links (plane network structure link,hyper_cube network structure links).The hypermedia information system,based on the model and the basic data layer (the infiniy RS image),represents a digital globe.An approach to the “Getting Lost in the Hyper_space” problem is presented.The approach using the hypermedia data model is an efficient way of handling a large number of RS images in various geographical information systems.展开更多
Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user n...Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user navigation, enhanced 911 (E911), law enforcement, location-based and marketing services. Indoor navigation applications require a reliable, trustful and continuous navigation solution that overcomes the challenge of Global Navigation Satellite System (GNSS) signal unavailability. To compensate for this issue, other navigation systems such as Inertial Navigation System (INS) are introduced, however, over time there is a significant amount of drift especially in common with low-cost commercial sensors. In this paper, a map aided navigation solution is developed. This research develops an aiding system that utilizes geospatial data to assist the navigation solution by providing virtual boundaries for the navigation trajectories and limits its possibilities only when it is logical to locate the user on a map. The algorithm develops a Pedestrian Dead Reckoning (PDR) based on smart-phone accelerometer and magnetometer sensors to provide the navigation solution. Geospatial model for two indoor environments with a developed map matching algorithm was used to match and project navigation position estimates on the geospatial map. The developed algorithms were field tested in indoor environments and yielded accurate matching results as well as a significant enhancement to positional accuracy. The achieved results demonstrate that the contribution of the developed map aided system enhances the reliability, usability, and accuracy of navigation trajectories in indoor environments.展开更多
在线练习和测试是网络学习的重要组成部分。但是,目前多数开发工具实现的在线试题课程,学习管理系统很难标 准化地记录测试结果、学习者反馈等重要学习数据。通过探索 SCORM RTE API、SCORM Data Model Elements 以及 SCO 和 LMS 之...在线练习和测试是网络学习的重要组成部分。但是,目前多数开发工具实现的在线试题课程,学习管理系统很难标 准化地记录测试结果、学习者反馈等重要学习数据。通过探索 SCORM RTE API、SCORM Data Model Elements 以及 SCO 和 LMS 之间的通信机制,最后给出了一个符合 SCORM 的 Dreamweaver 试题开发插件作为范例,实现了标准化的数据跟踪和记录.展开更多
In recent years, maritime transportation has played an important role in global economy development. As a result, ship traffic has become more congested. Moreover, ship navigation is susceptible to weather and environ...In recent years, maritime transportation has played an important role in global economy development. As a result, ship traffic has become more congested. Moreover, ship navigation is susceptible to weather and environmental conditions, and in some cases, it may become dangerous. Therefore, vessels are subjected to high-risk navigation conditions. To understand the latent risk of ship navigation, this study focused on the actual ship behavior. Thus, an analysis of ship behavior was carded out using historical ship navigation based on automatic identification system data. Consequently, a dynamic analysis of the speed and encounter situation was performed. One of the main results of this work was the understanding of the latent risk involved in ships navigating the Seto Inland Sea, which is one of the most congested routes in Japan. Moreover, the risk areas were obtained, and visualized using a geographical information system. The obtained results can be applied to ensure safe navigation and the development of a safe and efficient navigation model.展开更多
在线练习和测试是网络学习的重要组成部分。但目前多数开发工具实现的在线试题课程、学习管理系统很难标准化地记录测试结果、学习者反馈等重要学习数据。通过探索SCORM RTE API,SCORM Data Model Elements以及SCO和LMS之间的通信机制,...在线练习和测试是网络学习的重要组成部分。但目前多数开发工具实现的在线试题课程、学习管理系统很难标准化地记录测试结果、学习者反馈等重要学习数据。通过探索SCORM RTE API,SCORM Data Model Elements以及SCO和LMS之间的通信机制,给出了一个符合SCORM的Dreamweaver试题开发插件的范例,实现了标准化的数据跟踪和记录。展开更多
In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenge...In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative ...In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative materials, this paper presents extensible markup language (XML) based strategy for several important problems of data processing in network supported collaborative design, such as the representation of standard for the exchange of product model data (STEP) with XML in the product information expression and the management of XML documents using relational database. The paper gives a detailed exposition on how to clarify the mapping between XML structure and the relationship database structure and how XML-QL queries can be translated into structured query language (SQL) queries. Finally, the structure of data processing system based on XML is presented.展开更多
文摘Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields,for instance,smart healthcare,emergency rescue,soldier positioning et al.The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors,disturbed local magnetic field,and complex motion modes of the pedestrian.This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE)framework,which can be applied for long-term navigation tasks.A Bi-directional Long Short-Term Memory(Bi-LSTM)based quasi-static magnetic field(QSMF)detection algorithm is developed for extracting useful magnetic observation for heading calibration,and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period.In addition,a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks,and enhanced by the magnetic and trajectory features assisted loop detection algorithm.Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms,and final estimated heading and positioning accuracy indexes reaches 5and less than 2 m under the time period of 30 min,respectively.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.
文摘This paper presents the hypermedia data model based on the infinity RS image information system we have developed.The hypermedia data model consists of different semantic units called nodes,and the associations between nodes are called links.This paper proposes three kinds of nodes (interior node,physical node and complex node) and two kinds of links (plane network structure link,hyper_cube network structure links).The hypermedia information system,based on the model and the basic data layer (the infiniy RS image),represents a digital globe.An approach to the “Getting Lost in the Hyper_space” problem is presented.The approach using the hypermedia data model is an efficient way of handling a large number of RS images in various geographical information systems.
文摘Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user navigation, enhanced 911 (E911), law enforcement, location-based and marketing services. Indoor navigation applications require a reliable, trustful and continuous navigation solution that overcomes the challenge of Global Navigation Satellite System (GNSS) signal unavailability. To compensate for this issue, other navigation systems such as Inertial Navigation System (INS) are introduced, however, over time there is a significant amount of drift especially in common with low-cost commercial sensors. In this paper, a map aided navigation solution is developed. This research develops an aiding system that utilizes geospatial data to assist the navigation solution by providing virtual boundaries for the navigation trajectories and limits its possibilities only when it is logical to locate the user on a map. The algorithm develops a Pedestrian Dead Reckoning (PDR) based on smart-phone accelerometer and magnetometer sensors to provide the navigation solution. Geospatial model for two indoor environments with a developed map matching algorithm was used to match and project navigation position estimates on the geospatial map. The developed algorithms were field tested in indoor environments and yielded accurate matching results as well as a significant enhancement to positional accuracy. The achieved results demonstrate that the contribution of the developed map aided system enhances the reliability, usability, and accuracy of navigation trajectories in indoor environments.
文摘In recent years, maritime transportation has played an important role in global economy development. As a result, ship traffic has become more congested. Moreover, ship navigation is susceptible to weather and environmental conditions, and in some cases, it may become dangerous. Therefore, vessels are subjected to high-risk navigation conditions. To understand the latent risk of ship navigation, this study focused on the actual ship behavior. Thus, an analysis of ship behavior was carded out using historical ship navigation based on automatic identification system data. Consequently, a dynamic analysis of the speed and encounter situation was performed. One of the main results of this work was the understanding of the latent risk involved in ships navigating the Seto Inland Sea, which is one of the most congested routes in Japan. Moreover, the risk areas were obtained, and visualized using a geographical information system. The obtained results can be applied to ensure safe navigation and the development of a safe and efficient navigation model.
文摘在线练习和测试是网络学习的重要组成部分。但目前多数开发工具实现的在线试题课程、学习管理系统很难标准化地记录测试结果、学习者反馈等重要学习数据。通过探索SCORM RTE API,SCORM Data Model Elements以及SCO和LMS之间的通信机制,给出了一个符合SCORM的Dreamweaver试题开发插件的范例,实现了标准化的数据跟踪和记录。
文摘In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. AA420060)
文摘In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative materials, this paper presents extensible markup language (XML) based strategy for several important problems of data processing in network supported collaborative design, such as the representation of standard for the exchange of product model data (STEP) with XML in the product information expression and the management of XML documents using relational database. The paper gives a detailed exposition on how to clarify the mapping between XML structure and the relationship database structure and how XML-QL queries can be translated into structured query language (SQL) queries. Finally, the structure of data processing system based on XML is presented.