A novel LDNMOS embedded silicon controlled rectifier(SCR) was proposed to enhance ESD robustness of high-voltage(HV) LDNMOS based on a 0.5 μm 18 V CDMOS process. A two-dimensional(2D) device simulation and a transmis...A novel LDNMOS embedded silicon controlled rectifier(SCR) was proposed to enhance ESD robustness of high-voltage(HV) LDNMOS based on a 0.5 μm 18 V CDMOS process. A two-dimensional(2D) device simulation and a transmission line pulse(TLP) testing were used to analyze the working mechanism and ESD performance of the novel device. Compared with the traditional GG-LDNMOS, the secondary breakdown current(It2) of the proposed device can successfully increase from 1.146 A to 3.169 A with a total width of 50 μm, and ESD current discharge efficiency is improved from 0.459 m A/μm2 to 1.884 m A/μm2. Moreover, due to their different turn-on resistances(Ron), the device with smaller channel length(L) owns a stronger ESD robustness per unit area.展开更多
A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic a...A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic activity. When a concentration of the sulfuric acid is less than 0.5 mol/L, sufficient cleaning effects cannot be obtained. In contrast, when the concentration is greater than 1.0 tool/L, the active components, vanadium and tungsten are undesirably eluted. The total BET surface of the catalyst regenerated by air lift loop reactor showed almost the same as that of fresh catalyst due to the removal of insoluble compounds which may be penetrated into pores of catalyst. The addition of a solution of 0.075 mol/L ammonium vanadate (NHnVO3) and 0.075 mol/L ammonium paratungstate (5(NH4)20· 12WO3-5H20) to 0.1 mol/L H2SO4 significantly increases the activity of the waste catalyst.展开更多
基金Project(NCET-11-0975)supported by Program for New Century Excellent Talents in University of Ministry of Education of ChinaProjects(61233010,61274043)supported by the National Natural Science Foundation of China
文摘A novel LDNMOS embedded silicon controlled rectifier(SCR) was proposed to enhance ESD robustness of high-voltage(HV) LDNMOS based on a 0.5 μm 18 V CDMOS process. A two-dimensional(2D) device simulation and a transmission line pulse(TLP) testing were used to analyze the working mechanism and ESD performance of the novel device. Compared with the traditional GG-LDNMOS, the secondary breakdown current(It2) of the proposed device can successfully increase from 1.146 A to 3.169 A with a total width of 50 μm, and ESD current discharge efficiency is improved from 0.459 m A/μm2 to 1.884 m A/μm2. Moreover, due to their different turn-on resistances(Ron), the device with smaller channel length(L) owns a stronger ESD robustness per unit area.
基金Project(2009T100100602) supported by the Korea Institute of Energy Technology Evaluation and Planning,Korea
文摘A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic activity. When a concentration of the sulfuric acid is less than 0.5 mol/L, sufficient cleaning effects cannot be obtained. In contrast, when the concentration is greater than 1.0 tool/L, the active components, vanadium and tungsten are undesirably eluted. The total BET surface of the catalyst regenerated by air lift loop reactor showed almost the same as that of fresh catalyst due to the removal of insoluble compounds which may be penetrated into pores of catalyst. The addition of a solution of 0.075 mol/L ammonium vanadate (NHnVO3) and 0.075 mol/L ammonium paratungstate (5(NH4)20· 12WO3-5H20) to 0.1 mol/L H2SO4 significantly increases the activity of the waste catalyst.