期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SCSO-GRU模型的网络流量预测
被引量:
1
1
作者
高佰宏
刘朝晖
刘华
《计算机与现代化》
2020年第4期72-77,84,共7页
网络流量有实时性、不稳定性和时序相关性等特点,传统网络流量预测模型存在泛化能力不强和预测精度低等不足之处。为解决这些不足,本文提出一种结合基于正余弦的群优化(SCSO)算法的GRU神经网络的网络流量预测模型(SCSO-GRU)。首先,介绍S...
网络流量有实时性、不稳定性和时序相关性等特点,传统网络流量预测模型存在泛化能力不强和预测精度低等不足之处。为解决这些不足,本文提出一种结合基于正余弦的群优化(SCSO)算法的GRU神经网络的网络流量预测模型(SCSO-GRU)。首先,介绍SCSO算法的粒子更新原理;然后构建SCSO-GRU神经网络的网络流量预测模型,将SCSO算法用于模型训练,提高训练效果,克服传统GRU神经网络收敛于局部最优的缺点;最后用SCSO-GRU模型进行网络流量预测。实验结果表明,与传统LSTM和GRU模型相比,本文模型具有显著的收敛效果和较好的预测精度,可以更好地刻画网络流量变化趋势。
展开更多
关键词
网络流量预测
scso
算法
GRU神经网络
下载PDF
职称材料
基于改进沙猫群算法的水库群防洪优化调度研究
2
作者
李淑敏
冯丽云
陈海涛
《中国农村水利水电》
北大核心
2024年第12期43-51,共9页
水库防洪调度对于有效减少洪水灾害、保障人民生命财产安全至关重要。此过程是个多阶段、非线性的、高纬度的工程问题,具有许多复杂的约束条件和相互依赖的决策变量。为了提高水库群优化调度问题的求解效率,充分发挥水库群协同防洪能力...
水库防洪调度对于有效减少洪水灾害、保障人民生命财产安全至关重要。此过程是个多阶段、非线性的、高纬度的工程问题,具有许多复杂的约束条件和相互依赖的决策变量。为了提高水库群优化调度问题的求解效率,充分发挥水库群协同防洪能力,提出了改进的沙猫群算法(Sand Cat Swarm Optimization Algorithm,SCSO),利用Cubic混沌映射策略实现调度方案的分散均匀性,引入鲸鱼算法的螺旋搜索策略提高种群的局部搜索和全局搜索能力,融合麻雀算法后阶段的预警机制增加算法后期全局搜索的能力,使用经典测试函数和秩和检验对算法的精度进行检验,结果表明,改进后的沙猫群算法的收敛速度和精度都得到了明显的提升;并首次将算法运用在水库群防洪优化调度上,建立防洪控制点处最大削峰准则模型,对黄河中下游5座水库联合防洪调度系统应用研究,同时,将改进的沙猫群算法(ISCSO)与原始沙猫群算法(SCSO)、蜣螂算法(DBO)的优化结果进行对比分析,其中DBO算法求得的控制点峰值流量为21274.3 m^(3)/s,削峰率为46.62%,SCSO算法求得的控制点峰值流量为21248.6 m^(3)/s,削峰率为46.68%,ISCSO算法求得的控制点峰值流量为20687.1 m^(3)/s,削峰值最率最大,为48.09%。结果表明,改进的沙猫群算法在解决水库防洪调度问题中削峰效果最好,且有效实现下游错峰效果,保证了下游河道以及防洪控制点的安全。研究成果为解决水库群防洪优化调度提供了新的思路和方法。
展开更多
关键词
水库群
scso
算法
I
scso
算法
防洪优化调度
下载PDF
职称材料
基于改进沙猫群优化算法优化CatBoost模型的气温和风速偏差订正
3
作者
沈天行
秦华旺
《科学技术与工程》
北大核心
2024年第34期14716-14725,共10页
当前环境下,气象要素的准确预报在农业生产,社会生活和交通运输方面起到了越来越重要的作用,因此提出了一种改进的沙猫群算法(sand cat swarm optimization, SCSO),用于优化CatBoost模型,以解决传统气温和风速预测不准确的问题。研究数...
当前环境下,气象要素的准确预报在农业生产,社会生活和交通运输方面起到了越来越重要的作用,因此提出了一种改进的沙猫群算法(sand cat swarm optimization, SCSO),用于优化CatBoost模型,以解决传统气温和风速预测不准确的问题。研究数据涵盖了南京地区2012年1月1日—2014年12月31日的气象数据,利用ERA5再分析数据作为真实数据。首先,将数据划分为训练集和验证集,利用SCSO优化CatBoost模型,以订正24、48、72 h刻预报的气温和风速。为了克服SCSO易陷入局部最优解和收敛速度慢的问题,采用Halton Sequence搜索算法初始化沙猫群位置,并引入莱维飞行和三角游走策略优化寻优过程。在迭代中,采用LOBL策略和边界突变算子确保不会陷入局部最优解。最后,利用改进的SCSO优化CatBoost的超参数,并结合K折交叉验证提高参数的可靠性和泛化性。结果表明,改进的SCSO-CatBoost模型相比XGBoost、LightGBM、传统GBDT、随机森林、支持向量机和线性回归模型具有更高的准确性和优越性,在24 h的气温和风速预测中均方根误差分别提升了0.514 5和0.174 9,在48、72 h的提升也十分显著。为提升气象要素预报准确性提供了科学依据和技术支持。
展开更多
关键词
CatBoost
沙猫群优化算法
神经网络
PYTHON
气象预测
偏差订正
下载PDF
职称材料
题名
基于SCSO-GRU模型的网络流量预测
被引量:
1
1
作者
高佰宏
刘朝晖
刘华
机构
南华大学计算机学院
南华大学电气工程学院
出处
《计算机与现代化》
2020年第4期72-77,84,共7页
基金
南华大学核燃料循环技术与装备湖南省协同创新中心开放基金资助项目(2019KFY18)。
文摘
网络流量有实时性、不稳定性和时序相关性等特点,传统网络流量预测模型存在泛化能力不强和预测精度低等不足之处。为解决这些不足,本文提出一种结合基于正余弦的群优化(SCSO)算法的GRU神经网络的网络流量预测模型(SCSO-GRU)。首先,介绍SCSO算法的粒子更新原理;然后构建SCSO-GRU神经网络的网络流量预测模型,将SCSO算法用于模型训练,提高训练效果,克服传统GRU神经网络收敛于局部最优的缺点;最后用SCSO-GRU模型进行网络流量预测。实验结果表明,与传统LSTM和GRU模型相比,本文模型具有显著的收敛效果和较好的预测精度,可以更好地刻画网络流量变化趋势。
关键词
网络流量预测
scso
算法
GRU神经网络
Keywords
network traffic prediction
scso algorithm
GRU neural network
分类号
TP399 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于改进沙猫群算法的水库群防洪优化调度研究
2
作者
李淑敏
冯丽云
陈海涛
机构
华北水利水电大学水利学院
晋城市水利水电事务中心
出处
《中国农村水利水电》
北大核心
2024年第12期43-51,共9页
基金
2021年郑州市科技协同创新专项(202121206)。
文摘
水库防洪调度对于有效减少洪水灾害、保障人民生命财产安全至关重要。此过程是个多阶段、非线性的、高纬度的工程问题,具有许多复杂的约束条件和相互依赖的决策变量。为了提高水库群优化调度问题的求解效率,充分发挥水库群协同防洪能力,提出了改进的沙猫群算法(Sand Cat Swarm Optimization Algorithm,SCSO),利用Cubic混沌映射策略实现调度方案的分散均匀性,引入鲸鱼算法的螺旋搜索策略提高种群的局部搜索和全局搜索能力,融合麻雀算法后阶段的预警机制增加算法后期全局搜索的能力,使用经典测试函数和秩和检验对算法的精度进行检验,结果表明,改进后的沙猫群算法的收敛速度和精度都得到了明显的提升;并首次将算法运用在水库群防洪优化调度上,建立防洪控制点处最大削峰准则模型,对黄河中下游5座水库联合防洪调度系统应用研究,同时,将改进的沙猫群算法(ISCSO)与原始沙猫群算法(SCSO)、蜣螂算法(DBO)的优化结果进行对比分析,其中DBO算法求得的控制点峰值流量为21274.3 m^(3)/s,削峰率为46.62%,SCSO算法求得的控制点峰值流量为21248.6 m^(3)/s,削峰率为46.68%,ISCSO算法求得的控制点峰值流量为20687.1 m^(3)/s,削峰值最率最大,为48.09%。结果表明,改进的沙猫群算法在解决水库防洪调度问题中削峰效果最好,且有效实现下游错峰效果,保证了下游河道以及防洪控制点的安全。研究成果为解决水库群防洪优化调度提供了新的思路和方法。
关键词
水库群
scso
算法
I
scso
算法
防洪优化调度
Keywords
reservoir group
scso algorithm
I
scso algorithm
flood control optimal scheduling
分类号
TV697.11 [水利工程—水利水电工程]
下载PDF
职称材料
题名
基于改进沙猫群优化算法优化CatBoost模型的气温和风速偏差订正
3
作者
沈天行
秦华旺
机构
南京信息工程大学电子与信息工程学院
出处
《科学技术与工程》
北大核心
2024年第34期14716-14725,共10页
文摘
当前环境下,气象要素的准确预报在农业生产,社会生活和交通运输方面起到了越来越重要的作用,因此提出了一种改进的沙猫群算法(sand cat swarm optimization, SCSO),用于优化CatBoost模型,以解决传统气温和风速预测不准确的问题。研究数据涵盖了南京地区2012年1月1日—2014年12月31日的气象数据,利用ERA5再分析数据作为真实数据。首先,将数据划分为训练集和验证集,利用SCSO优化CatBoost模型,以订正24、48、72 h刻预报的气温和风速。为了克服SCSO易陷入局部最优解和收敛速度慢的问题,采用Halton Sequence搜索算法初始化沙猫群位置,并引入莱维飞行和三角游走策略优化寻优过程。在迭代中,采用LOBL策略和边界突变算子确保不会陷入局部最优解。最后,利用改进的SCSO优化CatBoost的超参数,并结合K折交叉验证提高参数的可靠性和泛化性。结果表明,改进的SCSO-CatBoost模型相比XGBoost、LightGBM、传统GBDT、随机森林、支持向量机和线性回归模型具有更高的准确性和优越性,在24 h的气温和风速预测中均方根误差分别提升了0.514 5和0.174 9,在48、72 h的提升也十分显著。为提升气象要素预报准确性提供了科学依据和技术支持。
关键词
CatBoost
沙猫群优化算法
神经网络
PYTHON
气象预测
偏差订正
Keywords
CatBoost
scso
(sand cat swarm optimization)
algorithm
neural network
Python
meteorological forecast
bias correction
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SCSO-GRU模型的网络流量预测
高佰宏
刘朝晖
刘华
《计算机与现代化》
2020
1
下载PDF
职称材料
2
基于改进沙猫群算法的水库群防洪优化调度研究
李淑敏
冯丽云
陈海涛
《中国农村水利水电》
北大核心
2024
0
下载PDF
职称材料
3
基于改进沙猫群优化算法优化CatBoost模型的气温和风速偏差订正
沈天行
秦华旺
《科学技术与工程》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部