期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于SDAE特征表示的协同主题回归推荐模型 被引量:3
1
作者 谢国民 张婷婷 +2 位作者 刘明 屠乃威 刘志邦 《计算机工程与科学》 CSCD 北大核心 2019年第5期924-932,共9页
为解决推荐系统中的冷启动问题,在协同主题回归CTR模型的基础上引入堆叠去噪自编码器SDAE深度学习网络,用于学习用户辅助信息的隐表示,建立SDAE-CTR模型。模型应用2层SDAE网络,以用户信息为网络输入量,将编码过程获得的用户辅助信息的... 为解决推荐系统中的冷启动问题,在协同主题回归CTR模型的基础上引入堆叠去噪自编码器SDAE深度学习网络,用于学习用户辅助信息的隐表示,建立SDAE-CTR模型。模型应用2层SDAE网络,以用户信息为网络输入量,将编码过程获得的用户辅助信息的隐表示和解码过程获得的输入近似表示为网络的双输出量,最小化用户辅助信息和近似表示的差值来确定最优隐表示。模型融合用户-项目评分矩阵(冷启动条件无评分)、项目内容信息和用户辅助信息实现用户对未评分项目的评分预测,并在LastFM、Book Crossing和MovieLens数据集上从推荐准确度、新颖性和用户冷启动条件下的推荐效果等3方面对SDAE-CTR模型和CTR模型进行比较。结果表明,SDAE-CTR模型在冷启动或非冷启动的条件下,推荐效果都要优于CTR模型的,虽然新颖性较CTR模型稍微逊色一些,但理论上在合理的范围内,总体上SDAE-CTR模型表现较优。 展开更多
关键词 推荐系统 协同主题回归模型 堆叠去噪自编码器 混合推荐
下载PDF
基于神经网络和注意力机制的协同过滤推荐算法的研究
2
作者 王宁 李然 +2 位作者 王客程 吴江 范利利 《现代电子技术》 北大核心 2024年第20期95-100,共6页
针对协同过滤推荐算法中用户-物品矩阵的稀疏性,使得传统协同过滤算法推荐度较差的问题,提出一种改进的基于神经网络和注意力机制的协同过滤推荐算法B-SDAECF,旨在解决传统推荐系统中数据稀疏的问题。结合Transformer模型的变式Bert模... 针对协同过滤推荐算法中用户-物品矩阵的稀疏性,使得传统协同过滤算法推荐度较差的问题,提出一种改进的基于神经网络和注意力机制的协同过滤推荐算法B-SDAECF,旨在解决传统推荐系统中数据稀疏的问题。结合Transformer模型的变式Bert模型和堆叠式降噪自动编码器(SDAE),利用Bert模型从用户评论中提取高质量的特征表示,以获得向量矩阵;并将向量矩阵作为SDAE的初始权重,从而使SDAE模型能够更快速地运算,进而填充原有的用户-项目评分矩阵。实验结果显示,相比传统方法,所提方法在推荐系统的准确性和鲁棒性上有显著提升,推荐效果更优秀。 展开更多
关键词 神经网络 注意力机制 协同过滤 推荐系统 Bert模型 sdae
下载PDF
基于SDAE-BP的联合收割机作业故障监测 被引量:13
3
作者 习晨博 杨光友 +3 位作者 刘浪 刘景 陈学海 马志艳 《农业工程学报》 EI CAS CSCD 北大核心 2020年第17期46-53,共8页
为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以... 为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以转速传感器采集联合收割机脱粒滚筒转速、籽粒搅龙转速、喂入搅龙转速、杂余搅龙转速、风机转速、输送链耙转速、割刀频率以及逐稿器振动频率,并将采集的数据集作为系统的输入。利用SDAE提取输入信号的深层次特征,并由BP神经网络辨识收割机作业状态,实现联合收割机故障监测。在SDAE-BP模型训练过程中,去噪自动编码器(Denoising Auto Encode,DAE)依次经带有不同分布中心噪声的原始数据进行训练,然后将其堆叠,并通过误差反向传播算法对模型参数进行优化,以提升模型识别故障性能和泛化能力。试验结果表明,对于2018年联合收割机田间试验数据,模型的故障诊断准确率达到99.00%,与SDAE和BP神经网络相比,分别提高了1.5和4.5个百分点。将SDAE-BP故障诊断模型用2019年的试验数据进行更新,并用2018年和2019年试验数据进行测试,结果表明,更新后的模型对2018年试验数据的故障识别准确率为99.25%,对2019年试验数据的故障识别准确率为98.74%,更新后模型在2019试验数据集上的故障识别准确率较未更新模型提高了6.52个百分点。该文所建模型能够准确识别联合收割机的故障类型,且具有较好的鲁棒性,对旋转型机械故障监测及预警具有参考价值。 展开更多
关键词 农业机械 故障诊断 试验 联合收割机 sdae-BP模型 深层次特征 BP神经网络
下载PDF
基于偏好学习的视频图像单目标跟踪算法研究
4
作者 李其京 邹阳 +3 位作者 段芬 叶卉荣 王静 舒忠 《印刷与数字媒体技术研究》 CAS 北大核心 2023年第2期57-64,共8页
针对视频图像连续拍摄中不利的环境因素造成图像目标跟踪丢失的现象,本研究提出了一种基于SDAE模型和偏好学习模型结合的视频图像单目标跟踪算法。在SDAE模型中,采用卷积神经网络模型的处理规则,并对SDAE堆栈式去噪自编码器的内部排列... 针对视频图像连续拍摄中不利的环境因素造成图像目标跟踪丢失的现象,本研究提出了一种基于SDAE模型和偏好学习模型结合的视频图像单目标跟踪算法。在SDAE模型中,采用卷积神经网络模型的处理规则,并对SDAE堆栈式去噪自编码器的内部排列结构进行了调整;构建的偏好学习模型,将目标跟踪问题转换为目标图像块中重叠部分的区域大小排序问题,完成了排序函数、样本之间的偏好关系、跟踪约束条件和支持向量机二分类器的设计。本研究算法与实验选取的四种目标跟踪算法相比的结果表明,本研究算法在跟踪目标成功率、目标跟踪精度和系统运行时间方面具有一定优势,目标跟踪成功率和目标跟踪精度均为89%左右。 展开更多
关键词 图像目标跟踪 sdae模型 偏好学习模型 支持向量机 跟踪目标更新
下载PDF
基于堆栈降噪自编码器改进的混合推荐算法 被引量:14
5
作者 杨帅 王鹃 《计算机应用》 CSCD 北大核心 2018年第7期1866-1871,共6页
针对传统协同过滤算法仅利用评分信息作为推荐依据,没有利用用户评论和标签信息,无法准确反映用户对项目特征的偏好,推荐精确度低且容易过拟合等问题,提出一种基于堆栈降噪自编码(SDAE)改进的混合推荐(SDHR)算法。首先利用深度学习模型S... 针对传统协同过滤算法仅利用评分信息作为推荐依据,没有利用用户评论和标签信息,无法准确反映用户对项目特征的偏好,推荐精确度低且容易过拟合等问题,提出一种基于堆栈降噪自编码(SDAE)改进的混合推荐(SDHR)算法。首先利用深度学习模型SDAE从用户自由文本标签中抽取项目的显式特征信息;然后,改进隐因子模型(LFM)算法,使用显式项目特征信息替换LFM中的抽象特征,进行矩阵分解训练;最后通过用户-项目偏好矩阵为用户提供推荐。在公开数据集Movie Lens上的实验测试,与三组推荐模型(基于标签权重及协同过滤、基于SDAE和极限学习机、基于循环神经网络)比较,该算法推荐精确度分别提高了45.2%、38.4%和16.1%。实验结果表明,所提算法可以充分利用项目自由文本标签信息提高推荐性能。 展开更多
关键词 推荐系统 协同过滤 深度学习 堆栈降噪自编码器 隐因子模型
下载PDF
基于BERT的不完全数据情感分类 被引量:9
6
作者 罗俊 陈黎飞 《计算机应用》 CSCD 北大核心 2021年第1期139-144,共6页
不完全数据,如社交平台的互动信息、互联网电影资料库中的影评内容,广泛存在于现实生活中。而现有情感分类模型大多建立在完整的数据集上,没有考虑不完整数据对分类性能的影响。针对上述问题提出基于BERT的栈式降噪神经网络模型,用于面... 不完全数据,如社交平台的互动信息、互联网电影资料库中的影评内容,广泛存在于现实生活中。而现有情感分类模型大多建立在完整的数据集上,没有考虑不完整数据对分类性能的影响。针对上述问题提出基于BERT的栈式降噪神经网络模型,用于面向不完全数据的情感分类。该模型由栈式降噪自编码器(SDAE)和BERT两部分组成。首先将经词嵌入处理的不完全数据输入到SDAE中进行去噪训练,以提取深层特征来重构缺失词和错误词的特征表示;接着将所得输出传入BERT预训练模型中进行精化以进一步改进词的特征向量表示。在两个常用的情感数据集上的实验结果表明,所提方法在不完全数据情感分类中的F1值和准确率分别提高了约6%和5%,验证了所提模型的有效性。 展开更多
关键词 不完全数据 情感分类 BERT 栈式降噪自编码器 预训练模型
下载PDF
利用深度去噪自编码器深度学习的指令意图理解方法 被引量:5
7
作者 李瀚清 房宁 +1 位作者 赵群飞 夏泽洋 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第7期1102-1107,共6页
提出了一种利用深度去噪自编码器(SDAE)的自然语言指令意图理解方法.根据家庭服务机器人的使用环境和应用场景构建了一个自然语言文本指令语料库,并对语料库中各类指令进行意图标注,从而把文本指令理解问题转化为文本分类问题;在传统的... 提出了一种利用深度去噪自编码器(SDAE)的自然语言指令意图理解方法.根据家庭服务机器人的使用环境和应用场景构建了一个自然语言文本指令语料库,并对语料库中各类指令进行意图标注,从而把文本指令理解问题转化为文本分类问题;在传统的文本向量空间模型的基础上,融合了文本指令的词性信息,定义了一种文本表示模型——词性向量空间模型;将SDAE应用于文本指令意图理解,提取指令的高阶特征;用高斯核支持向量机进行训练和预测,进而实现了自然语言指令的意图理解.在所建语料库上进行多折交叉验证,结果表明指令意图理解平均准确率达到96%以上. 展开更多
关键词 意图理解 向量空间模型 支持向量机 深度去噪自编码器
下载PDF
基于深度学习的铝电解槽阳极效应预测方法研究 被引量:4
8
作者 何文 《中国有色冶金》 CAS 北大核心 2022年第5期112-117,共6页
阳极效应在铝电解生产中最为频发,对其进行准确预测能够稳定电解铝生产,降低能耗,减少事故。本文从深度学习入手,提出一种基于堆叠降噪自动编码器和长短时记忆网络的预测模型,利用堆叠降噪自动编码器挖掘关键故障特征信息,同时利用长短... 阳极效应在铝电解生产中最为频发,对其进行准确预测能够稳定电解铝生产,降低能耗,减少事故。本文从深度学习入手,提出一种基于堆叠降噪自动编码器和长短时记忆网络的预测模型,利用堆叠降噪自动编码器挖掘关键故障特征信息,同时利用长短时记忆网络实现故障诊断。本文通过采集某铝厂的历史生产数据对模型进行性能验证,结果表明,该模型预测准确率和F1分数分别为97.56%和0.9686。对比分析BP神经网络、广义回归神经网络、LSTM和SDAE-RF,本文构建的SDAE-LSTM的模型表现最佳,能准确地对阳极效应进行预报,在铝电解实际生产中具有重要的指导意义。 展开更多
关键词 铝电解 深度学习 故障诊断 阳极效应 电解槽 模型 sdae-LSTM
下载PDF
电网环境下基于深度学习的推荐系统算法研究 被引量:1
9
作者 何成艳 刘姜 刘丽婕 《电子测量技术》 2020年第12期60-64,共5页
针对电网数据种类复杂,传统数据推荐算法无法处理移动驱动数据,导致配电网信息过载,电网数据推荐存在效率低、误差高的问题,设计了基于深度学习的推荐系统算法模型。结果为构建基于SDAE和时间均模型混合的协同过滤推荐算法模型,引入大... 针对电网数据种类复杂,传统数据推荐算法无法处理移动驱动数据,导致配电网信息过载,电网数据推荐存在效率低、误差高的问题,设计了基于深度学习的推荐系统算法模型。结果为构建基于SDAE和时间均模型混合的协同过滤推荐算法模型,引入大数据降维技术对高纬度数据进行降维,构建基于输入层、模型层、输出层和应用层的信息数据架构,实现大量复杂信息数据推荐。结果表明,所提算法模型误差为2.3%,对比当前方法大幅度降低,提高了数据推荐的准确度。 展开更多
关键词 sdae 协同过滤推荐算法模型 推荐系统算法模型 数据降维 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部