期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Space debris environment engineering model 2019:Algorithms improvement and comparison with ORDEM 3.1 and MASTER-8
1
作者 Yuyan LIU Runqiang CHI +3 位作者 Baojun PANG HU Diqi Wuxiong CAO Dongfang WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期392-409,共18页
As an essential tool for realistic description of the current or future debris environment,the Space Debris Environment Engineering Model(SDEEM)has been developed to provide support for risk assessment of spacecraft.I... As an essential tool for realistic description of the current or future debris environment,the Space Debris Environment Engineering Model(SDEEM)has been developed to provide support for risk assessment of spacecraft.In contrast with SDEEM2015,SDEEM2019,the latest version,extends the orbital range from the Low Earth Orbit(LEO)to Geosynchronous Orbit(GEO)for the years 1958-2050.In this paper,improved modeling algorithms used by SDEEM2019 in propagating simulation,spatial density distribution,and spacecraft flux evaluation are presented.The debris fluxes of SDEEM2019 are compared with those of three typical models,i.e.,SDEEM2015,Orbital Debris Engineering Model 3.1(ORDEM 3.1),and Meteoroid and Space Debris Terrestrial Environment Reference(MASTER-8),in terms of two assessment modes.Three orbital cases,including the Geostationary Transfer Orbit(GTO),Sun-Synchronous Orbit(SSO)and International Space Station(ISS)orbit,are selected for the spacecraft assessment mode,and the LEO region is selected for the spatial density assessment mode.The analysis indicates that compared with previous algorithms,the variable step-size orbital propagating algorithm based on semi-major axis control is more precise,the spatial density algorithm based on the second zonal harmonic of the non-spherical Earth gravity(J_(2))is more applicable,and the result of the position-centered spacecraft flux algorithm is more convergent.The comparison shows that SDEEM2019 and MASTER-8 have consistent trends due to similar modeling processes,while the differences between SDEEM2019 and ORDEM 3.1 are mainly caused by different modeling approaches for uncatalogued debris. 展开更多
关键词 sdeem2019 Space debris propagating algorithm Spatial density algorithm ORDEM 3.1 MASTER-8
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部