期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
RID1 sets rice heading date by balancing its binding with SLR1 and SDG722 被引量:3
1
作者 Shuo Zhang Li Deng +2 位作者 Rui Cheng Jie Hu Chang-Yin Wu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第1期149-165,共17页
Rice(Oryza sativa) is a major crop that feeds billions of people, and its yield is strongly influenced by flowering time(heading date). Loss of RICE INDETERMINATE1(RID1) function causes plants not to flower;thus, RID1... Rice(Oryza sativa) is a major crop that feeds billions of people, and its yield is strongly influenced by flowering time(heading date). Loss of RICE INDETERMINATE1(RID1) function causes plants not to flower;thus, RID1 is considered a master switch among flowering-related genes. However, it remains unclear whether other proteins function together with RID1 to regulate rice floral transition.Here, we revealed that the chromatin accessibilityand H3 K9 ac, H3 K4 me3, and H3 K36 me3 levels at Heading date 3 a(Hd3 a) and RICE FLOWERING LOCUS T1(RFT1) loci were significantly reduced in rid1 mutants. Notably, RID1 interacted with SET DOMAIN GROUP PROTEIN 722(SDG722), a methyltransferase. We determined that SDG722 affects the global level of H3 K4 me2/3 and H3 K36 me2/3, and promotes flowering primarily through the Early heading date1-Hd3 a/RFT1 pathway. We further established that rice DELLA protein SLENDER RICE1(SLR1) interacted with RID1 to inhibit its transactivation activity, that SLR1 suppresses rice flowering, and that messenger RNA and protein levels of SLR1 gradually decrease with plant growth. Furthermore, SLR1 competed with SDG722 for interaction with RID1. Overall, our results establish that interplay between RID1, SLR1, and SDG722 feeds into rice flowering-time control. 展开更多
关键词 heading date histone modification RICE RID1 sdg722 SLR1
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部