Along with the completion of the development of 4G technologies, the global mobile community starts the study of the next generation technologies, i.e. 5G technologies. This paper proposes a new flexible architecture ...Along with the completion of the development of 4G technologies, the global mobile community starts the study of the next generation technologies, i.e. 5G technologies. This paper proposes a new flexible architecture for 5G mobile networks based on Network Function Virtualization(NFV) and Software Defined Network(SDN) technologies, which is adaptable to use cases and scenarios. Then implementation reference architecture and some typical 5G network deployment cases are discussed. Besides, some key issues for further study are also indicated at the end.展开更多
The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era,...The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era, service based architecture is introduced into mobile networks. The monolithic network elements(e.g., MME, PGW, etc.) are split into smaller network functions to provide customized services. However, the management and deployment of network functions in service based 5 G core network are still big challenges. In this paper, we propose a novel management architecture for 5 G service based core network based on NFV and SDN. Combined with SDN, NFV and edge computing, the proposed framework can provide distributed and on-demand deployment of network functions, service guaranteed network slicing, flexible orchestration of network functions and optimal workload allocation. Simulations are conducted to show that the proposed framework and algorithm are effective in terms of reducing network operating cost.展开更多
It's promising to use Software-Defined Networking(SDN) and Network Functions Virtualization(NFV) to integrate satellite and terrestrial networks. To construct network service function chains in such a multi-domain...It's promising to use Software-Defined Networking(SDN) and Network Functions Virtualization(NFV) to integrate satellite and terrestrial networks. To construct network service function chains in such a multi-domain environment, we propose a horizontal-based Multi-domain Service Function Chaining(Md-SFC) orchestration framework. In this framework, multi-domain orchestrators can coordinate with each other to guarantee the end-to-end service quality. Intra-domain orchestrators also coordinate SDN controllers and NFV management components to implement intra-domain service function chains. Based on this, we further propose a heuristic SFC mapping algorithm with a cooperative inter-domain path calculation method to map service function chains to infrastructures. In this method, master multi-domain orchestrator and intra-domain orchestrators coordinate to select proper inter-domain links. We compare the cooperative method with a naive uncooperative way that domains' topology information is provided to the master multi-domain orchestrator and it calculates the shortest inter-domain path between intra-domain service function chains directly. Simulation results demonstrate that our solution is feasible. It is able to construct end-to-end performance guaranteed service function chain by horizontal-based cooperation. The cooperative inter-domain path calculation method decreasesthe mapping load for the master orchestrator and gets the same end-to-end performance.展开更多
Software-defined networks (SDN) have attracted much attention recently because of their flexibility in terms of network management. Increasingly, SDN is being introduced into wireless networks to form wireless SDN. ...Software-defined networks (SDN) have attracted much attention recently because of their flexibility in terms of network management. Increasingly, SDN is being introduced into wireless networks to form wireless SDN. One enabling technology for wireless SDN is network virtualization, which logically divides one wireless network element, such as a base station, into multiple slices, and each slice serving as a standalone virtual BS. In this way, one physical mobile wireless network can be partitioned into multiple virtual networks in a software-defined manner. Wireless virtual networks comprising virtual base stations also need to provide QoS to mobile end-user services in the same context as their physical hosting networks. One key QoS parameter is delay. This paper presents a delay model for software-defined wireless virtual networks. Network calculus is used in the modelling. In particular, stochastic network calculus, which describes more realistic models than deterministic network calculus, is used. The model enables theoretical investigation of wireless SDN, which is largely dominated by either algorithms or prototype implementations.展开更多
基金supported by the National Science and Technology Major Project No.2015ZX03002004
文摘Along with the completion of the development of 4G technologies, the global mobile community starts the study of the next generation technologies, i.e. 5G technologies. This paper proposes a new flexible architecture for 5G mobile networks based on Network Function Virtualization(NFV) and Software Defined Network(SDN) technologies, which is adaptable to use cases and scenarios. Then implementation reference architecture and some typical 5G network deployment cases are discussed. Besides, some key issues for further study are also indicated at the end.
基金supported by China Ministry of Education-CMCC Research Fund Project No.MCM20160104National Science and Technology Major Project No.No.2018ZX03001016+1 种基金Beijing Municipal Science and technology Commission Research Fund Project No.Z171100005217001Fundamental Research Funds for Central Universities NO.2018RC06
文摘The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era, service based architecture is introduced into mobile networks. The monolithic network elements(e.g., MME, PGW, etc.) are split into smaller network functions to provide customized services. However, the management and deployment of network functions in service based 5 G core network are still big challenges. In this paper, we propose a novel management architecture for 5 G service based core network based on NFV and SDN. Combined with SDN, NFV and edge computing, the proposed framework can provide distributed and on-demand deployment of network functions, service guaranteed network slicing, flexible orchestration of network functions and optimal workload allocation. Simulations are conducted to show that the proposed framework and algorithm are effective in terms of reducing network operating cost.
基金supported by National High Technology of China ("863 program") under Grant No. 2015AA015702NSAF under Grant No.U1530118+1 种基金NSFC under Grant No.61602030National Basic Research Program of China ("973 program")under Grant No. 2013CB329101
文摘It's promising to use Software-Defined Networking(SDN) and Network Functions Virtualization(NFV) to integrate satellite and terrestrial networks. To construct network service function chains in such a multi-domain environment, we propose a horizontal-based Multi-domain Service Function Chaining(Md-SFC) orchestration framework. In this framework, multi-domain orchestrators can coordinate with each other to guarantee the end-to-end service quality. Intra-domain orchestrators also coordinate SDN controllers and NFV management components to implement intra-domain service function chains. Based on this, we further propose a heuristic SFC mapping algorithm with a cooperative inter-domain path calculation method to map service function chains to infrastructures. In this method, master multi-domain orchestrator and intra-domain orchestrators coordinate to select proper inter-domain links. We compare the cooperative method with a naive uncooperative way that domains' topology information is provided to the master multi-domain orchestrator and it calculates the shortest inter-domain path between intra-domain service function chains directly. Simulation results demonstrate that our solution is feasible. It is able to construct end-to-end performance guaranteed service function chain by horizontal-based cooperation. The cooperative inter-domain path calculation method decreasesthe mapping load for the master orchestrator and gets the same end-to-end performance.
基金supported in part by the grant from the National Natural Science Foundation of China (60973129)
文摘Software-defined networks (SDN) have attracted much attention recently because of their flexibility in terms of network management. Increasingly, SDN is being introduced into wireless networks to form wireless SDN. One enabling technology for wireless SDN is network virtualization, which logically divides one wireless network element, such as a base station, into multiple slices, and each slice serving as a standalone virtual BS. In this way, one physical mobile wireless network can be partitioned into multiple virtual networks in a software-defined manner. Wireless virtual networks comprising virtual base stations also need to provide QoS to mobile end-user services in the same context as their physical hosting networks. One key QoS parameter is delay. This paper presents a delay model for software-defined wireless virtual networks. Network calculus is used in the modelling. In particular, stochastic network calculus, which describes more realistic models than deterministic network calculus, is used. The model enables theoretical investigation of wireless SDN, which is largely dominated by either algorithms or prototype implementations.