The westem flower thrips, Frankliniella occidental& (Pergande) is a highly invasive pest that is able to exploit many crops across a wide range of environmental conditions. Five full-length cDNAs of heat shock prot...The westem flower thrips, Frankliniella occidental& (Pergande) is a highly invasive pest that is able to exploit many crops across a wide range of environmental conditions. Five full-length cDNAs of heat shock protein (HSP) genes (Fo-HSP90, Fo-HSP70, Fo-HSP60, Fo-HSP40 and Fo-HSP28.9) were cloned from F. occidentalis, and their expression profiles were investigated under conditions of thermal stress and insecticide exposure, and at different stages during development, using real-time quantitative PCR. All five gene sequences showed high similarity to homologs in other species, indicating the conserved fimction of this gene family. HSP60 represents an informative phylogenetic marker at the ordinal taxonomic level within Insecta, but HSP90, which has two homologous copies in Hymenoptera, was not informative. The expression of Fo-HSPs under thermal stress suggests that Fo-HSP90, Fo-HSP70, and Fo-HSP28.9 are inducible by both cold and heat stress, Fo-HSP40 is only heat-inducible, and Fo-HSP60 is thermally insensitive. There were two patterns of cold induction of Fo-HSPs: one is from 0 to 4℃ and the other is around -8℃. All five Fo-HSPs genes were induced by exposure to sublethal concentrations of the insecticide avermectin. The expression of the five Fo-HSPs during different developmental stages suggests that they all play a role in development of F. occidentalis.展开更多
Stress-associated proteins(SAPs)are known as response factors to multiple abiotic and biotic stresses in plants.However,the potential physiological and molecular functions of SAPs remain largely unclear.Castor bean(Ri...Stress-associated proteins(SAPs)are known as response factors to multiple abiotic and biotic stresses in plants.However,the potential physiological and molecular functions of SAPs remain largely unclear.Castor bean(Ricinus communis L.)is one of the most economically valuable non-edible woody oilseed crops,able to be widely cultivated in marginal lands worldwide because of its broad adaptive capacity to soil and climate conditions.Whether SAPs in castor bean plays a key role in adapting diverse soil conditions and stresses remains unknown.In this study,we used the castor bean genome to identify and characterize nine castor bean SAP genes(RcSAP).Structural analysis showed that castor bean SAP gene structures and functional domain types vary greatly,differing in intron number,protein sequence,and functional domain type.Notably,the AN1-C2H2eC2H2 zinc finger domain within RcSAP9 has not been often observed in other plant families.High throughput RNA-seq data showed that castor bean SAP gene profiles varied among different tissues.In addition,castor bean SAP gene expression varied in response to different stresses,including salt,drought,heat,cold and ABA and MeJA,suggesting that the transcriptional regulation of castor bean SAP genes might operate independently of each other,and at least partially independent from ABA and MeJA signal pathways.Cis-element analyses for each castor bean SAP gene showed that no common cis-elements are shared across the nine castor bean SAP genes.Castor bean SAPs were localized to different regions of cells,including the cytoplasm,nucleus,and cytomembrane.This study provides a comprehensive profile of castor bean SAP genes that advances our understanding of their potential physiological and molecular functions in regulating growth and development and their responses to different abiotic stresses.展开更多
Mitogen-activated protein kinases(MAPKs)play pivotal roles in response to environmental stresses and bacterial infections.Compared with those in the higher vertebrates,studies of mapk gene family are still limited in ...Mitogen-activated protein kinases(MAPKs)play pivotal roles in response to environmental stresses and bacterial infections.Compared with those in the higher vertebrates,studies of mapk gene family are still limited in teleost.Identification,characterization,classification,and expression profiling of totally 15 mapk genes in black rockfish(Sebastes schlegelii)were conducted.Phylogenetic relationships show that these mapk genes could be divided into extracellular signal-regulated kinase(ERK),c-Jun N-terminal kinase(JNK),and p38 sub-families.In addition,gene structures,syntenic analysis,and selective pressure analysis are performed to confirm their annotations.Results of selective pressure analysis indicate that mapk1,mapk3,mapk7,mapk10,mapk11,and mapk12 underwent significantly-positive selections,while the others genes such as mapk4,mapk6,mapk15,mapk8a,mapk8b,mapk9,mapk13,mapk14a,and mapk14b were under purifying selections.Moreover,results of qRT-PCR indicate that mapk genes in 8 healthy tissues displayed different expression patterns.The expression patterns of several mapk genes including mapk12,mapk13,mapk14a,mapk14b,and mapk15 were significantly changed in mucosal tissues after Edwardsiella piscicida infection.This study demonstrates that mapk genes in black rockfish play vital prevention roles against bacterial infection,which not only helps us understand the structure and function of mapk genes in black rockfish,but also provides a reference to understand the role of mapk genes in teleost immune responses.展开更多
AIM: To develop a prognostic gene set that can predict patient overall survival status based on the whole genome expression analysis. METHODS: Using Illumina HumanWG-6 BeadChip followed by semi-supervised analysis, we...AIM: To develop a prognostic gene set that can predict patient overall survival status based on the whole genome expression analysis. METHODS: Using Illumina HumanWG-6 BeadChip followed by semi-supervised analysis, we analyzed the expression of 47 296 transcripts in two batches of gastric cancer patients who underwent surgical resection. Thirty-nine samples in the first batch were used as the training set to discover candidate markers correlated to overall survival, and thirty-three samples in the second batch were used for validation. RESULTS: A panel of ten genes were identified as prognostic marker in the first batch samples and classified patients into a lowand a high-risk group with significantly different survival times (P = 0.000047). This prognostic marker was then verified in an independent validation sample batch (P = 0.0009). By comparing with the traditional Tumor-node-metastasis (TNM) staging system, this ten-gene prognostic marker showed consistent prognosis results. It was the only independent prognostic value by multivariate Cox regression analysis (P = 0.007). Interestingly, six of these ten genes are ribosomal proteins, suggesting a possible association between the deregulation of ribosome related gene expression and the poor prognosis. CONCLUSION: A ten-gene marker correlated with overall prognosis, including 6 ribosomal proteins, was identified and verified, which may complement the predictive value of TNM staging system.展开更多
The SQUAMOSA promoter binding protein (SBP)-box genes encode a kind of plant-specific transcription factors (TFs) and play important roles in the regulation of plant development. In this study, a genome-wide chara...The SQUAMOSA promoter binding protein (SBP)-box genes encode a kind of plant-specific transcription factors (TFs) and play important roles in the regulation of plant development. In this study, a genome-wide characterization of this family was conducted in maize (Zea mays). Thirty-one SBP-box genes were identified to be distributed in nine chromosomes and 16 of them were complementary to the mature ZmmiR156 sequences. All the Z. mays SBP (ZmSBP) genes were classified into two clusters with eight subgroups according to the phylogenetic analysis of proteins, which were consistent with the pattern of exon-intron structures. The phylogenetic tree of the ZmSBP, Oryza sativa SBP-like (OsSPL) and Arabidopsis thaliana SBP-like (AtSPL) genes were constructed and all the SBP-box genes were divided into eight groups, which was the same as the classification of ZmSBP genes. The comparision of the expression profiles of all SBP-box genes in these three species indicated that most orthologous genes had similar expression patterns. The results from this study provided a basic understanding of the ZmSBP genes and might facilitate future researches for elucidating the SBP-box genes function in maize.展开更多
The functional diversity of plant valine-qlutamine(VQ) proteins is closely associated with their partners WRKY transcription factors, and also with a complex network of signaling pathways that mediated by hormone mole...The functional diversity of plant valine-qlutamine(VQ) proteins is closely associated with their partners WRKY transcription factors, and also with a complex network of signaling pathways that mediated by hormone molecules. We reported genome-wide expression profiles of differentially expressed rice VQ genes under nitric oxide(NO) treatment based on a microarray analysis. Cluster analysis of expression patterns revealed that some VQ genes and WRKY genes shared similar expression trends. Prediction of cis-elements showed that W-box or W-box-like sequences were overrepresented within the promoters of most of NO-responsive VQ genes. In particular, the similarly expressed Os VQ7 and Os WRKY24 showed great induction upon NO triggering. Transient expression assay and chromatin immunoprecipitation analysis demonstrated that OsWRKY24 was specifically bound to the promoter regions of Os VQ7 and Os WRKY24 itself, which contain multiple copies of W-box or W-box-like cis-elements. Yeast-two-hybrid assay indicated that OsWRKY24 can interact physically with OsVQ7 through the C-terminal of WRKY domain. The results suggested that OsVQ7 and OsWRKY24 may form an auto-and cross-regulation circuit that is required for tight regulation and fine-tuning of physiological processes they are involved in. These findings provided a solid foundation for exploring the specific functions of the VQ protein family in NO signaling pathway.展开更多
Chemosensory proteins(CSPs) perform several functions in insects.This study performed the gene expression,ligand-binding,and molecular docking assays on the EforCSP3 identified in the parasitoid wasp Encarsia formosa,...Chemosensory proteins(CSPs) perform several functions in insects.This study performed the gene expression,ligand-binding,and molecular docking assays on the EforCSP3 identified in the parasitoid wasp Encarsia formosa,to determine whether EforCSP3 functions in olfaction,especially in host location and host preference.The results showed that EforCSP3 was highly expressed in the female head,and its relative expression was much higher in adults than in other developmental stages.The fluorescence binding assays suggested that the EforCSP3 exhibited high binding affinities to a wide range of host-related volatiles,among which dibutyl phthalate,1-octene,β-elemene,and tridecane had the strongest binding affinity with EforCSP3,besides α-humulene and β-myrcene,and should be assessed as potential attractants.Protein structure modeling and molecular docking predicted the amino acid residues of EforCSP3possibly involved in volatile binding.α-Humulene and β-myrcene attracted E.formosa in a previous study and exhibited strong binding affinities with EforCSP3 in the current study.In conclusion,EforCSP3 may be involved in semiochemical reception by E.formosa.展开更多
Extremely Low Frequency Magnetic Fields (ELF MF) has been considered as a “possible human carcinogen” by International Agency for Research on Cancer (IARC) while credible mechanisms of its carcinogenicity remain unk...Extremely Low Frequency Magnetic Fields (ELF MF) has been considered as a “possible human carcinogen” by International Agency for Research on Cancer (IARC) while credible mechanisms of its carcinogenicity remain unknown. In this study, a proteomics approach was employed to investigate the changes of protein expression profile induced by ELF MF in human breast cancer cell line MCF7, in order to determine ELF MF-responsive proteins. MCF7 cells were exposed to 50 Hz, 0.4 mT ELF MF for 24 h and the changes of protein profile were examined using two dimensional electrophoresis. Up to 6 spots have been statistically signifi-cantly altered (their expression levels were changed at least 5 fold up or down) compared with sham-exposed group. 19 ones were only detected in exposure group while 19 ones were missing. Three proteins were identified by LC-IT Tandem MS as RNA binding protein regulatory subunit、Proteasome subunit beta type 7 precursor and Translationally Controlled Tumor Protein. Our finding showed that 50 Hz, 0.4 mT ELF MF alternates the protein profile of MCF7 cell and may affect many physiological functions of normal cell and 2-DE coupled with MS is a promising ap-proach to elucidating cellular effects of electromagnetic fields.展开更多
The soybean aphid,Aphis glycines,is an extreme specialist and an important invasive pest that relies on olfaction for behaviors such as feeding,mating,and foraging.Odorant-binding proteins(OBPs)play a vital role in ol...The soybean aphid,Aphis glycines,is an extreme specialist and an important invasive pest that relies on olfaction for behaviors such as feeding,mating,and foraging.Odorant-binding proteins(OBPs)play a vital role in olfaction by binding to volatile compounds and by regulating insect sensing of the environment.In this work we used rapid amplification of complementary DNA ends technology to identify and characterize 10 genes encoding A.glycines OBPs(AglyOBPs)belonging to 3 subfamilies,including 4 classic OBPs,5 Plus-C OBPs,and one Minus-C OBP.Quantitative real-time polymerase chain reaction demonstrated variable specific expression patterns for the 10 genes based on developmental stage and aphid tssue sampled.Expression levels of 7 AglyOBPs(2,3,4,5,7,9,and 10)were highest in the 4th instar,indicating that the 4th nymphal instar is an important developmental period during which soybean aphids regulate feeding and search for host plants.Tissue-specific expression results demonstrated that AglyOBP2,7,and 9 exhibited significantly higher expression levels in antennae.Meanwhile,ligand-binding analysis of5 OBPs demonstrated binding of AglyOBP2 and AglyOBP3 to a broad spectrum of volatiles released by green leaf plants,with bias toward 6-to 8-carbon chain volatiles and strong binding of AglyOBP7 to trans-B-farnesene.Taken together,our findings build a foundation of knowledge for use in the study of molecular olfaction mechanisms and prov ide insights to guide future soybean aphid research.展开更多
GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined ...GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.展开更多
Pathogenesis-related proteins (PRs) play many important roles in plant defense response against pathogen attack. To better understand the molecular mechanism of PR genes involved in wheat adult plant resistance (AP...Pathogenesis-related proteins (PRs) play many important roles in plant defense response against pathogen attack. To better understand the molecular mechanism of PR genes involved in wheat adult plant resistance (APR) to stripe rust, based on a differentially expressed transcribed derived fragment (TDF), a novel PR gene from wheat cv. Xingzi 9104 infected by the Puccinia striiformis Westend f. sp. tritici Erikss. pathotype CY32, which was highly similar to the maize ZmPRIO gene and designated as TaPRIO, was identified using in silico cloning and RT-PCR method. This novel TaPRIO gene was predicted to encode a 160-amino acid protein with a deduced molecular weight of 17.06 kDa and an isoelectronic point (pI) of 5.19. An amino acid sequence analysis of TaPR10 demonstrated the presence of a typical conserved domain of pathogenesis related protein Bet v I family. Multiple alignment analysis based on the amino acids encoded by 10 different PRIO genes from maize (Zea mays), rice (Oryza sativa), broomcorn (Sorghum bicolor), and wheat (Triticum aestivum) indicated that PR proteins of class 10 was conserved among the 4 plant species with about 80% similarity. DNA sequence of TaPRIO suggested the presence of one 84-bp intron with the splicing sites of GT-AT bi-nucleotide sequence between 188 and 271 bp. Using a real-time quantitative RT-PCR (qRT-PCR), expression profiles of TaPRIO revealed that at the adult-plant stage, TaPRIO transcript was up-regulated as early as 12 h post-inoculation (hpi), with the occurrence of maximum induction at 24 hpi. At the seedling stage, TaPRIO was also slightly induced 18 hpi. However, the transcript amount was relatively lower than that of the adult-plant stage. Taken together, these results suggest that TaPRIO may participate in wheat defense response of APR to stripe rust.展开更多
The olfactory system of insects is crucial in modulating behaviors such as host seeking,mating,and oviposition.Odorantbinding proteins(OBPs)are involved in semiochemical recognition.OBPs recognize and bind odorants an...The olfactory system of insects is crucial in modulating behaviors such as host seeking,mating,and oviposition.Odorantbinding proteins(OBPs)are involved in semiochemical recognition.OBPs recognize and bind odorants and transport them to odorant receptors located in olfactory neurons.Harmonia axyridis(Coleoptera:Coccinellidae)is a widely used predacious biological control agent for many agricultural and forestry pests.This study identified 19 OBPs in H.axyridis based on the antennal and whole-body transcriptomes of adults and obtained all the full-length open reading frames,including 11‘Classic’OBPs,7‘Minus-C’OBPs and 1‘Plus-C’OBP.They encoded 125 to 241 amino acid proteins with molecular weights ranging from 13.75 to 27.75 kDa and isoelectric points ranging from 4.15 to 8.80.Phylogenetic analyses were used to study the relationships between H.axyridis OBPs and OBPs from other species of Coleoptera.Quantitative real-time PCR(qPCR)analysis showed that HaxyOBP2,3,5,8,10,12,13,14,and 15 were highly expressed in antennae of both adult females and males.Moreover,HaxyOBP2,3,5,12,and 15 were more abundantly expressed in antennae than other body parts,while HaxyOBP13 and HaxyOBP14 were expressed predominantly,and at similar levels,in the head and antennae.The other OBP genes were highly expressed in non-olfactory tissues including the thorax,abdomen,legs,and wings.These results provide valuable information for further study of H.axyridis olfaction,which may ultimately enhance its use as a biocontrol agent.展开更多
In searching of differentially expressed genes in human uterine leiomyomas, differential display was used with twelve pairs of primers to compare human uterine leiomyomas with matched myometrium. False positives were ...In searching of differentially expressed genes in human uterine leiomyomas, differential display was used with twelve pairs of primers to compare human uterine leiomyomas with matched myometrium. False positives were eliminated by reverse Northern analysis. Positives were confirmed by Northern blot analysis. RESULTS: Four of 69 cDNA fragments (3 up-regulated named L1, L2 and L3 and 1 down-regulated named M1 in leiomyoma) were confirmed by Northern analysis. Sequence comparison and Northern analysis proved that L1 is exactly the human ribosomal protein S19. It was present ubiquitously in 13 tissues tested but in various levels and even in different size. L1 was highly expressed in parotidean cystadenocarcinoma, pancreatic cancer and breast cancer examined. No mutations have been found in human uterine leiomyomas (n=6). CONCLUSIONS: hRPS19 overexpression might be a universal signal in rapid cell growth tissues.展开更多
The genetic variation of seed proteins was assayed by SDSPAGE for 24 cultivars belonging to 5 species in Vigna and 7 species in its 7 relative genera cultivated in China. There were 48 polymorphic subunit bands discri...The genetic variation of seed proteins was assayed by SDSPAGE for 24 cultivars belonging to 5 species in Vigna and 7 species in its 7 relative genera cultivated in China. There were 48 polymorphic subunit bands discriminated from electrophoretic profiles. Two dendrograms were constructed by UPGMA cluster analyses using PHYLIP3.6 respectively. Variation among genera or species was larger than that among lower taxonomic categories level. Little variation among cuhivars of yardlong bean (Vigna sesquipedalis ) and small variation of lablab ( Lablab purpureus), pea (Pisum sativum), or sword bean (Canavalia gladiata), but large variation of soybean or rice bean in their origin of China were all revealed. The seed proteins profiles of traditionally regarded as typical species in Vigna such as yardlong bean, rice bean and small bean were more similar than mungbean (Vigna radiata) and black gram (Vigna mungo) were. Mungbean and black gram had distinct seed proteins pattern, they should be of two species.展开更多
基金partially funded by the National Natural Science Foundation of China(31201526)the National 973 Program of China(2009CB119000)+1 种基金the Earmarked Fund for Modern AgroIndustry Technology Research System(CARS-25-B-07)the Special Fund for Agro-Scientific Research in the Public Interest of China(20090332)
文摘The westem flower thrips, Frankliniella occidental& (Pergande) is a highly invasive pest that is able to exploit many crops across a wide range of environmental conditions. Five full-length cDNAs of heat shock protein (HSP) genes (Fo-HSP90, Fo-HSP70, Fo-HSP60, Fo-HSP40 and Fo-HSP28.9) were cloned from F. occidentalis, and their expression profiles were investigated under conditions of thermal stress and insecticide exposure, and at different stages during development, using real-time quantitative PCR. All five gene sequences showed high similarity to homologs in other species, indicating the conserved fimction of this gene family. HSP60 represents an informative phylogenetic marker at the ordinal taxonomic level within Insecta, but HSP90, which has two homologous copies in Hymenoptera, was not informative. The expression of Fo-HSPs under thermal stress suggests that Fo-HSP90, Fo-HSP70, and Fo-HSP28.9 are inducible by both cold and heat stress, Fo-HSP40 is only heat-inducible, and Fo-HSP60 is thermally insensitive. There were two patterns of cold induction of Fo-HSPs: one is from 0 to 4℃ and the other is around -8℃. All five Fo-HSPs genes were induced by exposure to sublethal concentrations of the insecticide avermectin. The expression of the five Fo-HSPs during different developmental stages suggests that they all play a role in development of F. occidentalis.
基金This research was funded by National Natural Science Foundation of China(31661143002,31771839,31701123and 31501034)Yunnan Applied Basic Research Projects(2016FB060 and 2016FB040).
文摘Stress-associated proteins(SAPs)are known as response factors to multiple abiotic and biotic stresses in plants.However,the potential physiological and molecular functions of SAPs remain largely unclear.Castor bean(Ricinus communis L.)is one of the most economically valuable non-edible woody oilseed crops,able to be widely cultivated in marginal lands worldwide because of its broad adaptive capacity to soil and climate conditions.Whether SAPs in castor bean plays a key role in adapting diverse soil conditions and stresses remains unknown.In this study,we used the castor bean genome to identify and characterize nine castor bean SAP genes(RcSAP).Structural analysis showed that castor bean SAP gene structures and functional domain types vary greatly,differing in intron number,protein sequence,and functional domain type.Notably,the AN1-C2H2eC2H2 zinc finger domain within RcSAP9 has not been often observed in other plant families.High throughput RNA-seq data showed that castor bean SAP gene profiles varied among different tissues.In addition,castor bean SAP gene expression varied in response to different stresses,including salt,drought,heat,cold and ABA and MeJA,suggesting that the transcriptional regulation of castor bean SAP genes might operate independently of each other,and at least partially independent from ABA and MeJA signal pathways.Cis-element analyses for each castor bean SAP gene showed that no common cis-elements are shared across the nine castor bean SAP genes.Castor bean SAPs were localized to different regions of cells,including the cytoplasm,nucleus,and cytomembrane.This study provides a comprehensive profile of castor bean SAP genes that advances our understanding of their potential physiological and molecular functions in regulating growth and development and their responses to different abiotic stresses.
基金Supported by the National Key R&D Program of China(No.2018YFD0900101)the Young Experts of Taishan Scholars(No.tsqn201909130)+2 种基金the Science and Technology Support Plan for Youth Innovation of Colleges and Universities in Shandong Province(No.2019KJF003)the“First Class Fishery Discipline”Program in Shandong Provincethe Shandong Technical System of Fish Industry(No.SDAIT-12-03)。
文摘Mitogen-activated protein kinases(MAPKs)play pivotal roles in response to environmental stresses and bacterial infections.Compared with those in the higher vertebrates,studies of mapk gene family are still limited in teleost.Identification,characterization,classification,and expression profiling of totally 15 mapk genes in black rockfish(Sebastes schlegelii)were conducted.Phylogenetic relationships show that these mapk genes could be divided into extracellular signal-regulated kinase(ERK),c-Jun N-terminal kinase(JNK),and p38 sub-families.In addition,gene structures,syntenic analysis,and selective pressure analysis are performed to confirm their annotations.Results of selective pressure analysis indicate that mapk1,mapk3,mapk7,mapk10,mapk11,and mapk12 underwent significantly-positive selections,while the others genes such as mapk4,mapk6,mapk15,mapk8a,mapk8b,mapk9,mapk13,mapk14a,and mapk14b were under purifying selections.Moreover,results of qRT-PCR indicate that mapk genes in 8 healthy tissues displayed different expression patterns.The expression patterns of several mapk genes including mapk12,mapk13,mapk14a,mapk14b,and mapk15 were significantly changed in mucosal tissues after Edwardsiella piscicida infection.This study demonstrates that mapk genes in black rockfish play vital prevention roles against bacterial infection,which not only helps us understand the structure and function of mapk genes in black rockfish,but also provides a reference to understand the role of mapk genes in teleost immune responses.
基金Supported by the National 863 Program (SQ2009AA02-XK1482570 and 2006AA02A402)Beijing Municipal Committeeof Science and Technology (D0905001040631) Beijing Capi-tal Development Foundation of Health Bureau (2007-2051)
文摘AIM: To develop a prognostic gene set that can predict patient overall survival status based on the whole genome expression analysis. METHODS: Using Illumina HumanWG-6 BeadChip followed by semi-supervised analysis, we analyzed the expression of 47 296 transcripts in two batches of gastric cancer patients who underwent surgical resection. Thirty-nine samples in the first batch were used as the training set to discover candidate markers correlated to overall survival, and thirty-three samples in the second batch were used for validation. RESULTS: A panel of ten genes were identified as prognostic marker in the first batch samples and classified patients into a lowand a high-risk group with significantly different survival times (P = 0.000047). This prognostic marker was then verified in an independent validation sample batch (P = 0.0009). By comparing with the traditional Tumor-node-metastasis (TNM) staging system, this ten-gene prognostic marker showed consistent prognosis results. It was the only independent prognostic value by multivariate Cox regression analysis (P = 0.007). Interestingly, six of these ten genes are ribosomal proteins, suggesting a possible association between the deregulation of ribosome related gene expression and the poor prognosis. CONCLUSION: A ten-gene marker correlated with overall prognosis, including 6 ribosomal proteins, was identified and verified, which may complement the predictive value of TNM staging system.
基金support by the National Natural Science Foundation of China(31200911,31101576)the China Postdoctoral Science Foundation(20100471197,201104475)the Research Fund for the Doctoral Program of Higher Education of China(20110146120040)
文摘The SQUAMOSA promoter binding protein (SBP)-box genes encode a kind of plant-specific transcription factors (TFs) and play important roles in the regulation of plant development. In this study, a genome-wide characterization of this family was conducted in maize (Zea mays). Thirty-one SBP-box genes were identified to be distributed in nine chromosomes and 16 of them were complementary to the mature ZmmiR156 sequences. All the Z. mays SBP (ZmSBP) genes were classified into two clusters with eight subgroups according to the phylogenetic analysis of proteins, which were consistent with the pattern of exon-intron structures. The phylogenetic tree of the ZmSBP, Oryza sativa SBP-like (OsSPL) and Arabidopsis thaliana SBP-like (AtSPL) genes were constructed and all the SBP-box genes were divided into eight groups, which was the same as the classification of ZmSBP genes. The comparision of the expression profiles of all SBP-box genes in these three species indicated that most orthologous genes had similar expression patterns. The results from this study provided a basic understanding of the ZmSBP genes and might facilitate future researches for elucidating the SBP-box genes function in maize.
基金funded by National Natural Science Foundation of China (Grant Nos. 31171803 and 31301617)Hunan Provincial Natural Science Foundation (Grant No. 2016JJ3060)+1 种基金Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15K045)Project of China Scholarship Council (Grant No. 201608430089)
文摘The functional diversity of plant valine-qlutamine(VQ) proteins is closely associated with their partners WRKY transcription factors, and also with a complex network of signaling pathways that mediated by hormone molecules. We reported genome-wide expression profiles of differentially expressed rice VQ genes under nitric oxide(NO) treatment based on a microarray analysis. Cluster analysis of expression patterns revealed that some VQ genes and WRKY genes shared similar expression trends. Prediction of cis-elements showed that W-box or W-box-like sequences were overrepresented within the promoters of most of NO-responsive VQ genes. In particular, the similarly expressed Os VQ7 and Os WRKY24 showed great induction upon NO triggering. Transient expression assay and chromatin immunoprecipitation analysis demonstrated that OsWRKY24 was specifically bound to the promoter regions of Os VQ7 and Os WRKY24 itself, which contain multiple copies of W-box or W-box-like cis-elements. Yeast-two-hybrid assay indicated that OsWRKY24 can interact physically with OsVQ7 through the C-terminal of WRKY domain. The results suggested that OsVQ7 and OsWRKY24 may form an auto-and cross-regulation circuit that is required for tight regulation and fine-tuning of physiological processes they are involved in. These findings provided a solid foundation for exploring the specific functions of the VQ protein family in NO signaling pathway.
基金supported by the National Natural Science Foundation of China (31772172)the earmarked fund for China Agriculture Research System (CARS25)the Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables。
文摘Chemosensory proteins(CSPs) perform several functions in insects.This study performed the gene expression,ligand-binding,and molecular docking assays on the EforCSP3 identified in the parasitoid wasp Encarsia formosa,to determine whether EforCSP3 functions in olfaction,especially in host location and host preference.The results showed that EforCSP3 was highly expressed in the female head,and its relative expression was much higher in adults than in other developmental stages.The fluorescence binding assays suggested that the EforCSP3 exhibited high binding affinities to a wide range of host-related volatiles,among which dibutyl phthalate,1-octene,β-elemene,and tridecane had the strongest binding affinity with EforCSP3,besides α-humulene and β-myrcene,and should be assessed as potential attractants.Protein structure modeling and molecular docking predicted the amino acid residues of EforCSP3possibly involved in volatile binding.α-Humulene and β-myrcene attracted E.formosa in a previous study and exhibited strong binding affinities with EforCSP3 in the current study.In conclusion,EforCSP3 may be involved in semiochemical reception by E.formosa.
基金This work was supported by the National Natural Science Foundat ion of China(Grant Nos.50137010&30170792)Zhejiang Provincial Key Projects for Science&Technology(Grant No.021106135)+1 种基金Zhejiang Provincial Natural Science Foundation(Grant No.301524)Key Projects of Health Bureau of Zhejiang Province(Grant No.2004ZD006).
文摘Extremely Low Frequency Magnetic Fields (ELF MF) has been considered as a “possible human carcinogen” by International Agency for Research on Cancer (IARC) while credible mechanisms of its carcinogenicity remain unknown. In this study, a proteomics approach was employed to investigate the changes of protein expression profile induced by ELF MF in human breast cancer cell line MCF7, in order to determine ELF MF-responsive proteins. MCF7 cells were exposed to 50 Hz, 0.4 mT ELF MF for 24 h and the changes of protein profile were examined using two dimensional electrophoresis. Up to 6 spots have been statistically signifi-cantly altered (their expression levels were changed at least 5 fold up or down) compared with sham-exposed group. 19 ones were only detected in exposure group while 19 ones were missing. Three proteins were identified by LC-IT Tandem MS as RNA binding protein regulatory subunit、Proteasome subunit beta type 7 precursor and Translationally Controlled Tumor Protein. Our finding showed that 50 Hz, 0.4 mT ELF MF alternates the protein profile of MCF7 cell and may affect many physiological functions of normal cell and 2-DE coupled with MS is a promising ap-proach to elucidating cellular effects of electromagnetic fields.
基金We gratefully acknowledge Dr.Tao Zhong(Shenyang Academy of Agricultural Sciences,China)for his con-structive reviews of the manuscript.This、work was supported by the Natural Science Foundation of Hei-longjiang(C2018060)Heilongjiang Postdoctoral Fund(LBH-Z16187)+2 种基金Scientific Research Project of Hei-longjiang Academy of Agricultural Sciences(2017ZC10,2017SJ032 and 2018JJPY004)National Key Research and Development Program(2017YFE0111000),National Natural Science Foundation ofChina(31771823)Ma-jor Project of Research and Development of Applied Tech-nology in Heilongjiang Province(GA18B101).
文摘The soybean aphid,Aphis glycines,is an extreme specialist and an important invasive pest that relies on olfaction for behaviors such as feeding,mating,and foraging.Odorant-binding proteins(OBPs)play a vital role in olfaction by binding to volatile compounds and by regulating insect sensing of the environment.In this work we used rapid amplification of complementary DNA ends technology to identify and characterize 10 genes encoding A.glycines OBPs(AglyOBPs)belonging to 3 subfamilies,including 4 classic OBPs,5 Plus-C OBPs,and one Minus-C OBP.Quantitative real-time polymerase chain reaction demonstrated variable specific expression patterns for the 10 genes based on developmental stage and aphid tssue sampled.Expression levels of 7 AglyOBPs(2,3,4,5,7,9,and 10)were highest in the 4th instar,indicating that the 4th nymphal instar is an important developmental period during which soybean aphids regulate feeding and search for host plants.Tissue-specific expression results demonstrated that AglyOBP2,7,and 9 exhibited significantly higher expression levels in antennae.Meanwhile,ligand-binding analysis of5 OBPs demonstrated binding of AglyOBP2 and AglyOBP3 to a broad spectrum of volatiles released by green leaf plants,with bias toward 6-to 8-carbon chain volatiles and strong binding of AglyOBP7 to trans-B-farnesene.Taken together,our findings build a foundation of knowledge for use in the study of molecular olfaction mechanisms and prov ide insights to guide future soybean aphid research.
基金the National Natural Science Foundation of China (Grant Nos. 30170515, 30370388, 30370798, 30570424 and 30571034),the National High Tech Development Project of China (Grant Nos. 2003AA2Z2051 and 2002AA2Z2052),+3 种基金Heilongjiang Science & Technology Key Project (Grant No. GB03C602-4),Harbin (City) Science & Technology Key Project (Grant No. 2003AA3CS113),Natural Science Foundation of Heilongjiang (Grant No. F0177 ),Outstanding Overseas Scientist Foundation of Education Department of Heilongjiang Province (Grant No. 1055HG009)
文摘GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.
基金supported by grants from the National Basic Research Program of China (2006CB708208,2006CB101901)the Program for Changjiang Scholars and Innovative Research Team in University, Ministry of Education of China (IRT0558)+1 种基金the National Natural Science Foundation of China (30930064)the 111Project from the Ministry of Education of China(B07049)
文摘Pathogenesis-related proteins (PRs) play many important roles in plant defense response against pathogen attack. To better understand the molecular mechanism of PR genes involved in wheat adult plant resistance (APR) to stripe rust, based on a differentially expressed transcribed derived fragment (TDF), a novel PR gene from wheat cv. Xingzi 9104 infected by the Puccinia striiformis Westend f. sp. tritici Erikss. pathotype CY32, which was highly similar to the maize ZmPRIO gene and designated as TaPRIO, was identified using in silico cloning and RT-PCR method. This novel TaPRIO gene was predicted to encode a 160-amino acid protein with a deduced molecular weight of 17.06 kDa and an isoelectronic point (pI) of 5.19. An amino acid sequence analysis of TaPR10 demonstrated the presence of a typical conserved domain of pathogenesis related protein Bet v I family. Multiple alignment analysis based on the amino acids encoded by 10 different PRIO genes from maize (Zea mays), rice (Oryza sativa), broomcorn (Sorghum bicolor), and wheat (Triticum aestivum) indicated that PR proteins of class 10 was conserved among the 4 plant species with about 80% similarity. DNA sequence of TaPRIO suggested the presence of one 84-bp intron with the splicing sites of GT-AT bi-nucleotide sequence between 188 and 271 bp. Using a real-time quantitative RT-PCR (qRT-PCR), expression profiles of TaPRIO revealed that at the adult-plant stage, TaPRIO transcript was up-regulated as early as 12 h post-inoculation (hpi), with the occurrence of maximum induction at 24 hpi. At the seedling stage, TaPRIO was also slightly induced 18 hpi. However, the transcript amount was relatively lower than that of the adult-plant stage. Taken together, these results suggest that TaPRIO may participate in wheat defense response of APR to stripe rust.
基金This work was supported by the National Key Research and Develop Program of China(2017YFD0200400)the Shandong Province Modern Agricultural Technology System Peanut Innovation Team,China(SDAIT-04-08)the Beijing Leafy Vegetables Innovation Team of Modern Agroindustry Technology Research System,China(BAIC07-2020).
文摘The olfactory system of insects is crucial in modulating behaviors such as host seeking,mating,and oviposition.Odorantbinding proteins(OBPs)are involved in semiochemical recognition.OBPs recognize and bind odorants and transport them to odorant receptors located in olfactory neurons.Harmonia axyridis(Coleoptera:Coccinellidae)is a widely used predacious biological control agent for many agricultural and forestry pests.This study identified 19 OBPs in H.axyridis based on the antennal and whole-body transcriptomes of adults and obtained all the full-length open reading frames,including 11‘Classic’OBPs,7‘Minus-C’OBPs and 1‘Plus-C’OBP.They encoded 125 to 241 amino acid proteins with molecular weights ranging from 13.75 to 27.75 kDa and isoelectric points ranging from 4.15 to 8.80.Phylogenetic analyses were used to study the relationships between H.axyridis OBPs and OBPs from other species of Coleoptera.Quantitative real-time PCR(qPCR)analysis showed that HaxyOBP2,3,5,8,10,12,13,14,and 15 were highly expressed in antennae of both adult females and males.Moreover,HaxyOBP2,3,5,12,and 15 were more abundantly expressed in antennae than other body parts,while HaxyOBP13 and HaxyOBP14 were expressed predominantly,and at similar levels,in the head and antennae.The other OBP genes were highly expressed in non-olfactory tissues including the thorax,abdomen,legs,and wings.These results provide valuable information for further study of H.axyridis olfaction,which may ultimately enhance its use as a biocontrol agent.
文摘In searching of differentially expressed genes in human uterine leiomyomas, differential display was used with twelve pairs of primers to compare human uterine leiomyomas with matched myometrium. False positives were eliminated by reverse Northern analysis. Positives were confirmed by Northern blot analysis. RESULTS: Four of 69 cDNA fragments (3 up-regulated named L1, L2 and L3 and 1 down-regulated named M1 in leiomyoma) were confirmed by Northern analysis. Sequence comparison and Northern analysis proved that L1 is exactly the human ribosomal protein S19. It was present ubiquitously in 13 tissues tested but in various levels and even in different size. L1 was highly expressed in parotidean cystadenocarcinoma, pancreatic cancer and breast cancer examined. No mutations have been found in human uterine leiomyomas (n=6). CONCLUSIONS: hRPS19 overexpression might be a universal signal in rapid cell growth tissues.
基金Supported by Scientific Research Programof Wuhan Municipali-ty, Hubei Province ,China (20015007090) .
文摘The genetic variation of seed proteins was assayed by SDSPAGE for 24 cultivars belonging to 5 species in Vigna and 7 species in its 7 relative genera cultivated in China. There were 48 polymorphic subunit bands discriminated from electrophoretic profiles. Two dendrograms were constructed by UPGMA cluster analyses using PHYLIP3.6 respectively. Variation among genera or species was larger than that among lower taxonomic categories level. Little variation among cuhivars of yardlong bean (Vigna sesquipedalis ) and small variation of lablab ( Lablab purpureus), pea (Pisum sativum), or sword bean (Canavalia gladiata), but large variation of soybean or rice bean in their origin of China were all revealed. The seed proteins profiles of traditionally regarded as typical species in Vigna such as yardlong bean, rice bean and small bean were more similar than mungbean (Vigna radiata) and black gram (Vigna mungo) were. Mungbean and black gram had distinct seed proteins pattern, they should be of two species.