A novel biomimetic protein-resistant modifier based on cellulose-based polymeric liquid crystals was described(PLCs). Two types of PLCs of propyl hydroxypropyl cellulose ester(PPC) and octyl hydroxypropyl cellulos...A novel biomimetic protein-resistant modifier based on cellulose-based polymeric liquid crystals was described(PLCs). Two types of PLCs of propyl hydroxypropyl cellulose ester(PPC) and octyl hydroxypropyl cellulose ester(OPC) were prepared by esterification from hydroxypropyl cellulose, and then were mixed with polyvinyl chloride and polyurethane to obtain composite films by solution casting, respectively. The surface morphology of PLCs and their composite films were characterized by polarized optical microscopy(POM) and scanning electron microscopy(SEM), suggesting the existence of microdomain separation with fingerprint texture in PLC composite films. Water contact angle measurement results indicated that hydrophilicity of PLC/polymer composite films was dependent on the type and content of PLC as well as the type of matrix due to their interaction. Using bovine serum albumin(BSA) as a model protein, protein adsorption results revealed that PLCs with protein-resistant property can obviously suppress protein adsorption on their composite films, probably due to their flexible LC state. Moreover, all PLCs and their composites exhibited non-toxicity by MTT assay, suggesting their safety for biomedical applications.展开更多
Considerable interest and research have focused on the administration of therapeutic proteins. For delivery of therapeutic proteins, bioavailability and stabilization of protein drugs to maintain therapeutically accep...Considerable interest and research have focused on the administration of therapeutic proteins. For delivery of therapeutic proteins, bioavailability and stabilization of protein drugs to maintain therapeutically acceptable levels is an important challenge in clinical trials. To overcome these challenges, polymeric nanoparticles have become one of the best methods for protein delivery. In this review, we summarize the current available polymeric nanoparticles designed for protein delivery, current status, and advantages of protein delivery systems.展开更多
Hydrogen sulfide (H2S) has been related to be toxic and to have a role in human physiological functions. Therefore, there is a necessity to comprehend ways to scavenger hydrogen sulfide from different media. Here, we ...Hydrogen sulfide (H2S) has been related to be toxic and to have a role in human physiological functions. Therefore, there is a necessity to comprehend ways to scavenger hydrogen sulfide from different media. Here, we used recombinant metaquo-Hemoglobin I (metHbI) from Lucina pectinata and metaquo-myoglobin (metMb) encapsulated in the tetramethyl orthosilicate gel (TMOS), to facilitate the understanding of H2S transfer toward these metaquo-hemeproteins. In this sol-gel environment, metHbI binds and releases H2S with rate constants of 0.0597 M-1·s-1 and 6.67 × 10-5 s-1, respectively. The process generates an H2S affinity constant (kon/koff) of 8.9 × 102 M-1, which is 107 lowers than the analogous constant in solution (6.3 × 109 M-1). Although the H2S koff for the rHbI-H2S complex is almost similar with both sol-gel and solution. To further understand how the H2S koff from rHbI-H2S in solution (5 μM) is influenced by the protein concentration gradient, metHbI and metMb (25 μM) encapsulated in TMOS sol-gel. Under these circumstances, the H2S transfer from a solution of the rHbI-H2S complex to encapsulated hemeprotein resulted in koff values of 1.90 × 10-4 s-1, and 2.09 × 10-4 s-1 leading to the formation of rHbI-H2S and Mb-H2S species, respectively. The results suggest that the: 1) extreme ionic TMOS construct limits the H2S pathways to reach the hemeprotein active center, 2) possible interaction with metHbI hydrophilic forces increases the hydrogen bonding networking and decreases the H2S association constant, 3) hemeproteins concentration gradients between solution and sol-gels also influence its hydrogen sulfide transfer. In the presence of oxygen or hydrogen peroxide metMb generated a mixture of Mb-H2S and sulfmyoglobin derivative, while encapsulated metHbI reaction did not produce the sulfheme species. Consequently, the results show that metHbI encapsulated in TMOS is an excellent trap for H2S from solution or gas media.展开更多
We report an electrodeposited poly(pyrrole-co-pyrrolepropylic acid) copolymer modified electroactive graphene-carbon nanotubes composite deposited on a glassy carbon electrode to detect the protein antigen(cTnI). The ...We report an electrodeposited poly(pyrrole-co-pyrrolepropylic acid) copolymer modified electroactive graphene-carbon nanotubes composite deposited on a glassy carbon electrode to detect the protein antigen(cTnI). The copolymer provides pendant carboxyl groups for the site-specific covalent immobilization of protein antibody, antitroponin I. The hybrid nanocomposite was used as a transducer for biointerfacial impedance sensing for cTnI detection.The results show that the hybrid exhibits a pseudo capacitive behaviour with a maximum phase angle of 49° near 1 Hz,which is due to the inhomogeneous and porous structure of the hybrid composition. The constant phase element of copolymer is 0.61(n = 0.61), whereas, it is 0.88(n = 0.88) for the hybrid composites, indicating a comparatively homogeneous microstructure after biomolecular functionalization. The transducer shows a linear change in charge transfer characteristic(R_(et)) on cTnI immunoreaction for spiked human serum in the concentration range of 1.0 pg mL^(-1)–10.0 ng mL^(-1). The sensitivity of the transducer is 167.8 ± 14.2 Ω cm^2 per decade, and it also exhibits high specificity and good reproducibility.展开更多
In this work the enhanced molecularly imprinted optosensing material based on graphene oxide-quantum dots ( GO- QDs) was synthesized for highly selective and sensitive specific recognition of the target protein, bov...In this work the enhanced molecularly imprinted optosensing material based on graphene oxide-quantum dots ( GO- QDs) was synthesized for highly selective and sensitive specific recognition of the target protein, bovine serum albumin (BSA). Here, GO was introduced to enhance the efficiency of mass-transfer in recognition of target protein. Molecularly imprinted polymer coated GO-QDs using BSA as template (BMIP-coated GO-QDs ) exhibited a fast mass-transfer speed, which could be ascribed to the high volume of efficient surface area and high target recognition efficiency of the synthesized nanoscale device. Under optimal conditions, it was found that the BSA as target protein could remarkably quench the relative fluorescence intensity of BMIP- coated GO-QDs linearly in a concentration-dependent manner that was best described by a Stern-Volmer equation. The Ksv (Stern- Volmer constant) for template BSA was much higher than bovine hemoglobin (BHb) and lysozyme (Lyz), implying a highly selective recognition ability of the BMIP-coated GO-QDs to BSA. This enhanced fluorescent nanoscale device may provide opportunities to develop a system that is efficient and effective and has potential in the design of highly effective fluorescent receptor for recognition of target protein in Droteomics studies.展开更多
Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular w...Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular weight.Stainless steel was used as the model substrate. The substrate was first coated with a hybrid polymer film, which was formed by simultaneous hydrolytic polycondensation of 3-aminopropyltriethoxysilane and polymerization of dopamine(HPAPD). After grafting the macroinitiator 2-bromoisobutyryl bromide, the block polymer brushes PMMA-b-PHEMA were grafted. Three proteins were used to test protein adsorption and antifouling behavior of the coating, including recombinant green fluorescent(54 k Da), recombinant R-transaminase(2 × 90 k Da), and recombinant catalase(4 × 98 k Da). It is demonstrated that the block polymer brushes not only can prevent the adsorption of small molecular weight proteins, but also can significantly reduce the adsorption of the large molecular weight proteins.展开更多
High salinity inhibits microbial activity in the bioremediation of saline wastewater.To alleviate osmotic stress,glycine betaine(GB),an osmoprotectant,is added to enhance the secretion of extracellular polymeric subst...High salinity inhibits microbial activity in the bioremediation of saline wastewater.To alleviate osmotic stress,glycine betaine(GB),an osmoprotectant,is added to enhance the secretion of extracellular polymeric substances(EPS).These EPS are pivotal in withstanding environmental stressors,yet the intricate interplay between GB supplementation and microbial responses through EPS modificationsdencompassing composition,molecular architecture,and electrochemical featuresdremains elusive in hypersaline conditions.Here we show microbial strategies for salinity endurance by investigating the impact of GB on the dynamic alterations of EPS properties.Our findings reveal that GB supplementation at 3.5%salinity elevates the total EPS(T-EPS)content from 12.50±0.05 to 24.58±0.96 mg per g dry cell weight.The observed shift in zeta potential from-28.95 to-6.25 mV at 0%and 3.5%salinity,respectively,with GB treatment,indicates a reduction in electrostatic repulsion and compaction.Notably,the EPS protein secondary structure transition from b-sheet to a-helix,with GB addition,signifies a more compact protein configuration,less susceptible to salinity fluctuations.Electrochemical analyses,including cyclic voltammetry(CV)and differential pulse voltammetry(DPV),reveal GB's role in promoting the release of exogenous electron shuttles,such as flavins and c-type cytochromes(c-Cyts).The enhancement in DPV peak areas(Q_(DPV))with GB addition implies an increase in available extracellular electron transfer sites.This investigation advances our comprehension of microbial adaptation mechanisms to salinity through EPS modifications facilitated by GB in saline habitats.展开更多
Four batch experiments of hydrolysis and acidification were carried out to investigate the distributions of proteins (PN) and polysaccharides (PS) in the sludge, the PN/PS ratio, the particle sizes, and their rela...Four batch experiments of hydrolysis and acidification were carried out to investigate the distributions of proteins (PN) and polysaccharides (PS) in the sludge, the PN/PS ratio, the particle sizes, and their relationship with sludge dewaterability (as determined by capillary suction time, CST). The sludge flocs were stratified through centrifugation- and ultrasound-based method into four fractions: (1) slime, (2) loosely bound extracellular polymeric substances (LB-EPS), (3) tightly bound EPS (TB-EPS), and (4) pellet. The results showed that PN was mainly partitioned in the pellet (80.7%) and TB-EPS (9.6%) fractions, while PS distributed evenly in the four fractions. During hydrolysis and acidification, PN was transferred from the pellet and TB-EPS fractions to the slime fraction, but PS had no significant transfer trends. The mean particle sizes of the sludge flocs decreased with hydrolysis and acidification. The pH had a more significant influence on the dewaterability of sludge flocs than temperature. Sludge dewaterability during hydrolysis and acidification processes greatly deteriorated from 9.7 s at raw sludge to 340-450 s under alkaline conditions. However, it was just slightly increased under acidic conditions. Further investigation suggested that CST was affected by soluble PN, soluble PN/PS, and particle sizes of sludge flocs, but was affected slightly by total PN, PS, or PN/PS in the whole sludge flocs and other fractions (except slime).展开更多
Superparamagnetic poly(styrene)-co-poly(2-acrylanmido-2-methyl propanesulfonic acid) (PSt-co-PAMPS) and poly(methylmethacrylate)-co-poly(glycidyl methacrylate) (PMMA-co-PGMA) microspheres with mean size of...Superparamagnetic poly(styrene)-co-poly(2-acrylanmido-2-methyl propanesulfonic acid) (PSt-co-PAMPS) and poly(methylmethacrylate)-co-poly(glycidyl methacrylate) (PMMA-co-PGMA) microspheres with mean size of 170 nm were prepared by emulsion polymerization in the presence of oleic acid-coated Fe3O4 nanoparticles. The structures, morphologies, diameter and diameter distribution of the as-prepared microspheres were identified by Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The saturation magnetizations of PSt-co-PAMPS and PMMA-co-PGMA microspheres are 21.94 and 25.07 emu/g, respectively. The as-synthesized magnetic microspheres were used for immobilization of Bovine serum albumin (BSA) by physical interaction and covalent interaction respectively. The equilibrium amount of BSA immobilized onto PMMA-co-PGMA microspheres was 86.48 mg/g microspheres in 90 min, while on PSt-co-PAMPS microspheres was 59.62 mg/g microspheres in 120 min.展开更多
Poly(ethylene glycol) methyl ether methacrylate(PEGMA) was grafted on fluorosilicone acrylate rigid gas permissible contact lens surface by means of argon plasma induced polymerization to improve surface hydrophil...Poly(ethylene glycol) methyl ether methacrylate(PEGMA) was grafted on fluorosilicone acrylate rigid gas permissible contact lens surface by means of argon plasma induced polymerization to improve surface hydrophilicity and reduce protein adsorption.The surface properties were characterized by contact angle measurement,x-ray photoelectron spectroscopy(XPS) and atomic force microscopy respectively.The surface protein adsorption was evaluated by lysozyme solution immersion and XPS analysis.The results indicated that a thin layer of PEGMA was successfully grafted.The surface hydrophilicity was bettered and surface free energy increased.The lysozyme adsorption on the lens surface was reduced greatly.展开更多
Interpenetrated polymer networks of chitosan (CHI), polyacrylic acid (PAA) and polyacrylamide (PAM) were prepared by free radical polymerization. These hydrogels were either washed with double distilled water (CHI/PAA...Interpenetrated polymer networks of chitosan (CHI), polyacrylic acid (PAA) and polyacrylamide (PAM) were prepared by free radical polymerization. These hydrogels were either washed with double distilled water (CHI/PAA/PAM) A or hydrolyzed with 1M sodium hydroxide (NaOH), (CHI/PAA/PAM) S. Both types of hydrogels were characterized by infrared spectroscopy, microstructural techniques and compressive mechanical testing. Finally, hydrogels were loaded with bovine serum albumin (BSA) and release followed at different pHs. Infrared spectra analysis showed correspondence between hydrogels and monomer feed compositions. Hydrolyzed hydrogels, had increased water content and pH swelling dependence. Compression modulus of swelled hydrolyzed hydrogels decreased with increasing equilibrium water content. Higher BSA loadings were achieved on hydrolyzed hydrogels due to their high water content and porosity. Protein release from hydrogels was low (≤ 20% after 10 hours) at pH 1.2, but sustained release was observed at pH 6.8 and 7.4. The integrity of the protein released at 6.8 and 7.4 by hydrolyzed hydrogels was unaffected. The hydrogles showed no cytotoxic effects on human skin dermal fibroblasts as determined by MTT assay except for two compositions of (CHI/PAA/PAM) A samples, which after seven days presented a viability lower than 80% respect to the control.展开更多
Objective: To investigate the effects of Propofol combined with remifentanil on serum levels of MBP, NSE and S100B protein, D-D and inflammatory factors in patients with acute craniocerebral trauma. Methods: A total o...Objective: To investigate the effects of Propofol combined with remifentanil on serum levels of MBP, NSE and S100B protein, D-D and inflammatory factors in patients with acute craniocerebral trauma. Methods: A total of 100 patients were selected with traumatic brain injury who underwent emergency surgery from August 2014 to May 2017 in our hospital, then randomly divided them into the control group and the experimental group, 50 cases each. The control group received isoflurane combined with remifentanil to maintain anesthesia, and the experimental group received propofol and remifentanil to maintain anesthesia. The inflammatory factors and the levels of MBP, NSE, S100B and D-D in the two groups before and after anesthesia (T0), 1H (T1) and postoperative 1H (T2) were detected and compared. Results: There was no significant difference between the two groups in the levels of TNF-α. The serum level of hs-CRP in two groups of T1, T2 increased significantly, the difference was statistically significant compared with T0, in the experimental group, serum level of hs-CRP at T1 and T2 was significantly higher than the control group, the difference was statistically significant. Conclusion: Propofol combined with remifentanil anesthesia for acute craniocerebral trauma can maintain the balance of inflammatory cytokine levels during the perioperative period, inhibit the elevation of serum MBP, NSE, S100B protein and D-D levels, reduce brain cell damage. It has a good protective effect on brain cells and is worthy of clinical application.展开更多
A new approach for producing polymer nanoparticles made of bovine serum albumin-poly(methy methacrylate) conjugate by precipitating in supercritical CO2 is reported. The nanoparticles were loaded with the anti-tumor d...A new approach for producing polymer nanoparticles made of bovine serum albumin-poly(methy methacrylate) conjugate by precipitating in supercritical CO2 is reported. The nanoparticles were loaded with the anti-tumor drug camptothecin. With albumin serving as a nutrient to cells, the drug-encapsulated nanoparticle shows an enhanced ability to kill cancer cells compared to that of the free drug in solution both in vitro and in vivo.展开更多
Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid mo...Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid monomers.Five kinds of L-amino acids were acryloylated to obtain functional monomers:L-phenylalanine(Phe)and L-leucine(Leu)with hydrophobic side chains,L-glutamic acid(Glu)with negative charges,and L-lysine(Lys)and L-arginine(Arg)with positive charges.After incubating the NPs with fibrinogen,g-globulin,and human serum albumin(HSA)respectively,the NPs that incorporated Nacryloyl-Arg monomers(AArg@NPs)showed the strongest and most specific binding affinity to fibrinogen,when compared with g-globulin and HSA.Additionally,the fibrinogen-AArg binding model had the best docking scores,and this may be due to the interaction of positively charged AArg@NPs and the negatively charged fibrinogen D domain and the hydrophobic interaction between them.The specific adsorption of AArg@NPs to fibrinogen was also confirmed by the immunoprecipitation assay,as the AArg@NPs selectively trapped the fibrinogen from a human plasma protein mixture.AArg@NPs had a strong selectivity for,and specificity to,fibrinogen and may be developed as a potential human fibrinogen-specific affinity reagent.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.31170911 and 31040027)the Research Development and Innovation Fund of Jinan University(No.21611410)+1 种基金the Open Fund of the First Affiliated Hospital,Jinan University,Guangzhou(No.511005024)the Macao Science and Technology Development Fund(No.064/2013/A2)
文摘A novel biomimetic protein-resistant modifier based on cellulose-based polymeric liquid crystals was described(PLCs). Two types of PLCs of propyl hydroxypropyl cellulose ester(PPC) and octyl hydroxypropyl cellulose ester(OPC) were prepared by esterification from hydroxypropyl cellulose, and then were mixed with polyvinyl chloride and polyurethane to obtain composite films by solution casting, respectively. The surface morphology of PLCs and their composite films were characterized by polarized optical microscopy(POM) and scanning electron microscopy(SEM), suggesting the existence of microdomain separation with fingerprint texture in PLC composite films. Water contact angle measurement results indicated that hydrophilicity of PLC/polymer composite films was dependent on the type and content of PLC as well as the type of matrix due to their interaction. Using bovine serum albumin(BSA) as a model protein, protein adsorption results revealed that PLCs with protein-resistant property can obviously suppress protein adsorption on their composite films, probably due to their flexible LC state. Moreover, all PLCs and their composites exhibited non-toxicity by MTT assay, suggesting their safety for biomedical applications.
文摘Considerable interest and research have focused on the administration of therapeutic proteins. For delivery of therapeutic proteins, bioavailability and stabilization of protein drugs to maintain therapeutically acceptable levels is an important challenge in clinical trials. To overcome these challenges, polymeric nanoparticles have become one of the best methods for protein delivery. In this review, we summarize the current available polymeric nanoparticles designed for protein delivery, current status, and advantages of protein delivery systems.
文摘Hydrogen sulfide (H2S) has been related to be toxic and to have a role in human physiological functions. Therefore, there is a necessity to comprehend ways to scavenger hydrogen sulfide from different media. Here, we used recombinant metaquo-Hemoglobin I (metHbI) from Lucina pectinata and metaquo-myoglobin (metMb) encapsulated in the tetramethyl orthosilicate gel (TMOS), to facilitate the understanding of H2S transfer toward these metaquo-hemeproteins. In this sol-gel environment, metHbI binds and releases H2S with rate constants of 0.0597 M-1·s-1 and 6.67 × 10-5 s-1, respectively. The process generates an H2S affinity constant (kon/koff) of 8.9 × 102 M-1, which is 107 lowers than the analogous constant in solution (6.3 × 109 M-1). Although the H2S koff for the rHbI-H2S complex is almost similar with both sol-gel and solution. To further understand how the H2S koff from rHbI-H2S in solution (5 μM) is influenced by the protein concentration gradient, metHbI and metMb (25 μM) encapsulated in TMOS sol-gel. Under these circumstances, the H2S transfer from a solution of the rHbI-H2S complex to encapsulated hemeprotein resulted in koff values of 1.90 × 10-4 s-1, and 2.09 × 10-4 s-1 leading to the formation of rHbI-H2S and Mb-H2S species, respectively. The results suggest that the: 1) extreme ionic TMOS construct limits the H2S pathways to reach the hemeprotein active center, 2) possible interaction with metHbI hydrophilic forces increases the hydrogen bonding networking and decreases the H2S association constant, 3) hemeproteins concentration gradients between solution and sol-gels also influence its hydrogen sulfide transfer. In the presence of oxygen or hydrogen peroxide metMb generated a mixture of Mb-H2S and sulfmyoglobin derivative, while encapsulated metHbI reaction did not produce the sulfheme species. Consequently, the results show that metHbI encapsulated in TMOS is an excellent trap for H2S from solution or gas media.
文摘We report an electrodeposited poly(pyrrole-co-pyrrolepropylic acid) copolymer modified electroactive graphene-carbon nanotubes composite deposited on a glassy carbon electrode to detect the protein antigen(cTnI). The copolymer provides pendant carboxyl groups for the site-specific covalent immobilization of protein antibody, antitroponin I. The hybrid nanocomposite was used as a transducer for biointerfacial impedance sensing for cTnI detection.The results show that the hybrid exhibits a pseudo capacitive behaviour with a maximum phase angle of 49° near 1 Hz,which is due to the inhomogeneous and porous structure of the hybrid composition. The constant phase element of copolymer is 0.61(n = 0.61), whereas, it is 0.88(n = 0.88) for the hybrid composites, indicating a comparatively homogeneous microstructure after biomolecular functionalization. The transducer shows a linear change in charge transfer characteristic(R_(et)) on cTnI immunoreaction for spiked human serum in the concentration range of 1.0 pg mL^(-1)–10.0 ng mL^(-1). The sensitivity of the transducer is 167.8 ± 14.2 Ω cm^2 per decade, and it also exhibits high specificity and good reproducibility.
文摘In this work the enhanced molecularly imprinted optosensing material based on graphene oxide-quantum dots ( GO- QDs) was synthesized for highly selective and sensitive specific recognition of the target protein, bovine serum albumin (BSA). Here, GO was introduced to enhance the efficiency of mass-transfer in recognition of target protein. Molecularly imprinted polymer coated GO-QDs using BSA as template (BMIP-coated GO-QDs ) exhibited a fast mass-transfer speed, which could be ascribed to the high volume of efficient surface area and high target recognition efficiency of the synthesized nanoscale device. Under optimal conditions, it was found that the BSA as target protein could remarkably quench the relative fluorescence intensity of BMIP- coated GO-QDs linearly in a concentration-dependent manner that was best described by a Stern-Volmer equation. The Ksv (Stern- Volmer constant) for template BSA was much higher than bovine hemoglobin (BHb) and lysozyme (Lyz), implying a highly selective recognition ability of the BMIP-coated GO-QDs to BSA. This enhanced fluorescent nanoscale device may provide opportunities to develop a system that is efficient and effective and has potential in the design of highly effective fluorescent receptor for recognition of target protein in Droteomics studies.
基金Supported by the National Natural Science Foundation of China(21476023)
文摘Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular weight.Stainless steel was used as the model substrate. The substrate was first coated with a hybrid polymer film, which was formed by simultaneous hydrolytic polycondensation of 3-aminopropyltriethoxysilane and polymerization of dopamine(HPAPD). After grafting the macroinitiator 2-bromoisobutyryl bromide, the block polymer brushes PMMA-b-PHEMA were grafted. Three proteins were used to test protein adsorption and antifouling behavior of the coating, including recombinant green fluorescent(54 k Da), recombinant R-transaminase(2 × 90 k Da), and recombinant catalase(4 × 98 k Da). It is demonstrated that the block polymer brushes not only can prevent the adsorption of small molecular weight proteins, but also can significantly reduce the adsorption of the large molecular weight proteins.
基金financed by the National Key Research and Development Program of China(No.2021YFA1201704)the National Natural Science Foundation of China(No.52170084)the Natural Science Foundation of Jiangsu Province(BK20211574).
文摘High salinity inhibits microbial activity in the bioremediation of saline wastewater.To alleviate osmotic stress,glycine betaine(GB),an osmoprotectant,is added to enhance the secretion of extracellular polymeric substances(EPS).These EPS are pivotal in withstanding environmental stressors,yet the intricate interplay between GB supplementation and microbial responses through EPS modificationsdencompassing composition,molecular architecture,and electrochemical featuresdremains elusive in hypersaline conditions.Here we show microbial strategies for salinity endurance by investigating the impact of GB on the dynamic alterations of EPS properties.Our findings reveal that GB supplementation at 3.5%salinity elevates the total EPS(T-EPS)content from 12.50±0.05 to 24.58±0.96 mg per g dry cell weight.The observed shift in zeta potential from-28.95 to-6.25 mV at 0%and 3.5%salinity,respectively,with GB treatment,indicates a reduction in electrostatic repulsion and compaction.Notably,the EPS protein secondary structure transition from b-sheet to a-helix,with GB addition,signifies a more compact protein configuration,less susceptible to salinity fluctuations.Electrochemical analyses,including cyclic voltammetry(CV)and differential pulse voltammetry(DPV),reveal GB's role in promoting the release of exogenous electron shuttles,such as flavins and c-type cytochromes(c-Cyts).The enhancement in DPV peak areas(Q_(DPV))with GB addition implies an increase in available extracellular electron transfer sites.This investigation advances our comprehension of microbial adaptation mechanisms to salinity through EPS modifications facilitated by GB in saline habitats.
基金supported by the National Hi-Tech Research and Development Program (863) of China (No. 2006AA06Z384).
文摘Four batch experiments of hydrolysis and acidification were carried out to investigate the distributions of proteins (PN) and polysaccharides (PS) in the sludge, the PN/PS ratio, the particle sizes, and their relationship with sludge dewaterability (as determined by capillary suction time, CST). The sludge flocs were stratified through centrifugation- and ultrasound-based method into four fractions: (1) slime, (2) loosely bound extracellular polymeric substances (LB-EPS), (3) tightly bound EPS (TB-EPS), and (4) pellet. The results showed that PN was mainly partitioned in the pellet (80.7%) and TB-EPS (9.6%) fractions, while PS distributed evenly in the four fractions. During hydrolysis and acidification, PN was transferred from the pellet and TB-EPS fractions to the slime fraction, but PS had no significant transfer trends. The mean particle sizes of the sludge flocs decreased with hydrolysis and acidification. The pH had a more significant influence on the dewaterability of sludge flocs than temperature. Sludge dewaterability during hydrolysis and acidification processes greatly deteriorated from 9.7 s at raw sludge to 340-450 s under alkaline conditions. However, it was just slightly increased under acidic conditions. Further investigation suggested that CST was affected by soluble PN, soluble PN/PS, and particle sizes of sludge flocs, but was affected slightly by total PN, PS, or PN/PS in the whole sludge flocs and other fractions (except slime).
基金Funded by the National Natural Science Foundation of China (20876070)Technology Innovation Team of Universities Funded Project of Jiangsu Province (2007-5)
文摘Superparamagnetic poly(styrene)-co-poly(2-acrylanmido-2-methyl propanesulfonic acid) (PSt-co-PAMPS) and poly(methylmethacrylate)-co-poly(glycidyl methacrylate) (PMMA-co-PGMA) microspheres with mean size of 170 nm were prepared by emulsion polymerization in the presence of oleic acid-coated Fe3O4 nanoparticles. The structures, morphologies, diameter and diameter distribution of the as-prepared microspheres were identified by Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The saturation magnetizations of PSt-co-PAMPS and PMMA-co-PGMA microspheres are 21.94 and 25.07 emu/g, respectively. The as-synthesized magnetic microspheres were used for immobilization of Bovine serum albumin (BSA) by physical interaction and covalent interaction respectively. The equilibrium amount of BSA immobilized onto PMMA-co-PGMA microspheres was 86.48 mg/g microspheres in 90 min, while on PSt-co-PAMPS microspheres was 59.62 mg/g microspheres in 120 min.
基金supported by National Natural Science Foundation of China(No.51273072)
文摘Poly(ethylene glycol) methyl ether methacrylate(PEGMA) was grafted on fluorosilicone acrylate rigid gas permissible contact lens surface by means of argon plasma induced polymerization to improve surface hydrophilicity and reduce protein adsorption.The surface properties were characterized by contact angle measurement,x-ray photoelectron spectroscopy(XPS) and atomic force microscopy respectively.The surface protein adsorption was evaluated by lysozyme solution immersion and XPS analysis.The results indicated that a thin layer of PEGMA was successfully grafted.The surface hydrophilicity was bettered and surface free energy increased.The lysozyme adsorption on the lens surface was reduced greatly.
文摘Interpenetrated polymer networks of chitosan (CHI), polyacrylic acid (PAA) and polyacrylamide (PAM) were prepared by free radical polymerization. These hydrogels were either washed with double distilled water (CHI/PAA/PAM) A or hydrolyzed with 1M sodium hydroxide (NaOH), (CHI/PAA/PAM) S. Both types of hydrogels were characterized by infrared spectroscopy, microstructural techniques and compressive mechanical testing. Finally, hydrogels were loaded with bovine serum albumin (BSA) and release followed at different pHs. Infrared spectra analysis showed correspondence between hydrogels and monomer feed compositions. Hydrolyzed hydrogels, had increased water content and pH swelling dependence. Compression modulus of swelled hydrolyzed hydrogels decreased with increasing equilibrium water content. Higher BSA loadings were achieved on hydrolyzed hydrogels due to their high water content and porosity. Protein release from hydrogels was low (≤ 20% after 10 hours) at pH 1.2, but sustained release was observed at pH 6.8 and 7.4. The integrity of the protein released at 6.8 and 7.4 by hydrolyzed hydrogels was unaffected. The hydrogles showed no cytotoxic effects on human skin dermal fibroblasts as determined by MTT assay except for two compositions of (CHI/PAA/PAM) A samples, which after seven days presented a viability lower than 80% respect to the control.
基金The Natural Science Foundation of Shaanxi Province(2016JQ2341).
文摘Objective: To investigate the effects of Propofol combined with remifentanil on serum levels of MBP, NSE and S100B protein, D-D and inflammatory factors in patients with acute craniocerebral trauma. Methods: A total of 100 patients were selected with traumatic brain injury who underwent emergency surgery from August 2014 to May 2017 in our hospital, then randomly divided them into the control group and the experimental group, 50 cases each. The control group received isoflurane combined with remifentanil to maintain anesthesia, and the experimental group received propofol and remifentanil to maintain anesthesia. The inflammatory factors and the levels of MBP, NSE, S100B and D-D in the two groups before and after anesthesia (T0), 1H (T1) and postoperative 1H (T2) were detected and compared. Results: There was no significant difference between the two groups in the levels of TNF-α. The serum level of hs-CRP in two groups of T1, T2 increased significantly, the difference was statistically significant compared with T0, in the experimental group, serum level of hs-CRP at T1 and T2 was significantly higher than the control group, the difference was statistically significant. Conclusion: Propofol combined with remifentanil anesthesia for acute craniocerebral trauma can maintain the balance of inflammatory cytokine levels during the perioperative period, inhibit the elevation of serum MBP, NSE, S100B protein and D-D levels, reduce brain cell damage. It has a good protective effect on brain cells and is worthy of clinical application.
文摘A new approach for producing polymer nanoparticles made of bovine serum albumin-poly(methy methacrylate) conjugate by precipitating in supercritical CO2 is reported. The nanoparticles were loaded with the anti-tumor drug camptothecin. With albumin serving as a nutrient to cells, the drug-encapsulated nanoparticle shows an enhanced ability to kill cancer cells compared to that of the free drug in solution both in vitro and in vivo.
基金This work was supported by the Natural Science Foundation of Guangdong Province,China(Grant No.:2017A030313775)the Science and Technology Planning Project of Guangdong Province,China(Grant No.:2016A010103016)the Science and Technology Planning Project of Guangzhou City of Guangdong Province,China(Grant No.:201607010148).
文摘Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid monomers.Five kinds of L-amino acids were acryloylated to obtain functional monomers:L-phenylalanine(Phe)and L-leucine(Leu)with hydrophobic side chains,L-glutamic acid(Glu)with negative charges,and L-lysine(Lys)and L-arginine(Arg)with positive charges.After incubating the NPs with fibrinogen,g-globulin,and human serum albumin(HSA)respectively,the NPs that incorporated Nacryloyl-Arg monomers(AArg@NPs)showed the strongest and most specific binding affinity to fibrinogen,when compared with g-globulin and HSA.Additionally,the fibrinogen-AArg binding model had the best docking scores,and this may be due to the interaction of positively charged AArg@NPs and the negatively charged fibrinogen D domain and the hydrophobic interaction between them.The specific adsorption of AArg@NPs to fibrinogen was also confirmed by the immunoprecipitation assay,as the AArg@NPs selectively trapped the fibrinogen from a human plasma protein mixture.AArg@NPs had a strong selectivity for,and specificity to,fibrinogen and may be developed as a potential human fibrinogen-specific affinity reagent.