期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于Conformer-SE的端到端语音识别
1
作者 马永杰 李罡 《计算机系统应用》 2024年第12期106-114,共9页
基于自注意力机制的Transformer端到端模型在语音识别任务中表现出了卓越的性能.然而,该模型在浅层处理时对局部特征信息的捕捉能力存在一定的局限,同时也没有充分考虑不同块之间的相互依赖性.为了解决这些问题,提出了一种改进的Conform... 基于自注意力机制的Transformer端到端模型在语音识别任务中表现出了卓越的性能.然而,该模型在浅层处理时对局部特征信息的捕捉能力存在一定的局限,同时也没有充分考虑不同块之间的相互依赖性.为了解决这些问题,提出了一种改进的Conformer-SE端到端语音识别系统模型.该模型首先采用了Conformer结构来替代Transformer中的编码器部分,从而增强了模型对局部特征的提取能力.接着,通过引入SE注意力通道机制,将每个块的输出以加权求和的形式整合到最终的输出中.在Aishell-1这一公开数据集上的实验结果显示,相较于原始的Transformer模型,Conformer-SE模型在字符错误率上相对降低了18.18%. 展开更多
关键词 语音识别 端到端 TRANSFORMER CONFORMER se注意力通道
下载PDF
基于文本和声学特征的双模态融合抑郁倾向识别算法
2
作者 赵健 崔骞 +1 位作者 石佳 刘岳 《计算机工程》 CAS CSCD 北大核心 2024年第11期49-58,共10页
在抑郁症诊断中,抑郁症患者的面部表情、声音信号和文字等数据可以作为评估抑郁倾向的客观指标。相较于视频,文本和音频模态在处理敏感的个人信息时能更好地保护患者的隐私,并且文本和音频均属于语言模态,相关性较强。针对抑郁倾向识别... 在抑郁症诊断中,抑郁症患者的面部表情、声音信号和文字等数据可以作为评估抑郁倾向的客观指标。相较于视频,文本和音频模态在处理敏感的个人信息时能更好地保护患者的隐私,并且文本和音频均属于语言模态,相关性较强。针对抑郁倾向识别中变长文本数据不易被分析以及手动提取音频特征存在局限性的问题,提出一种基于Transformer的融合网络优化方法。对于文本模态,使用卷积神经网络对文本进行特征提取,得到文本在不同尺度下的局部特征,然后引入Transformer模型来处理全局信息和长距离依赖。对于音频模态,为了降低手动提取音频特征对识别结果的影响,通过使用VGGish网络来自动提取音频特征,并将提取好的音频特征送入Transformer中。最后,为进一步增强文本和音频模态融合网络的识别性能,引入SE通道注意力机制,使模型能够自适应地调整各模态之间的权重分配,更有效地聚焦于关键特征。实验结果表明,双模态融合后的网络准确率达到92.7%,相比仅使用文本或音频模态,准确率分别提升2.9和4.9个百分点。 展开更多
关键词 Transformer模型 VGGish网络 双模态融合 抑郁倾向识别 se通道注意力机制 深度学习
下载PDF
一种改进的基于YOLOv5s的轻量化航拍目标检测模型
3
作者 陈海燕 毛利宏 《计算机科学》 CSCD 北大核心 2024年第S02期465-472,共8页
无人机航拍图像背景复杂、目标密集且小目标占比大,加大了目标检测的难度。基于深度学习的目标检测模型计算复杂度高,难以部署在无人机搭载的嵌入式设备上。针对此问题,提出了一种改进的基于YOLOv5s的轻量化航拍图像目标检测模型。首先... 无人机航拍图像背景复杂、目标密集且小目标占比大,加大了目标检测的难度。基于深度学习的目标检测模型计算复杂度高,难以部署在无人机搭载的嵌入式设备上。针对此问题,提出了一种改进的基于YOLOv5s的轻量化航拍图像目标检测模型。首先将YOLOv5s主干网络的C3模块BottleNeck替换为轻量级的ShuffleNetv2网络,来降低模型的参数量和计算复杂度;其次在ShuffleNetv2网络中引入跨层信息交叉融合、SE通道注意力机制以及残差连接,来缓解卷积操作导致的特征通道数减少、网络中间层特征图的信息利用不充分问题;再次在YOLOv5s多尺度特征融合网络中引入SE通道注意力机制,来提高网络对关键特征的捕捉和提取能力;最后对改进的目标检测模型采用通道剪枝的方法使模型进一步轻量化。实验结果表明:在NWPU VHR-10数据集上,改进后的模型与YOLOv5s模型相比,目标检测的准确率和平均精度均值分别提升了3.5%,1.9%,模型的参数量和计算量降低了76%,48.7%,模型大小压缩了73.8%,检测速度提升了48%。 展开更多
关键词 目标检测 轻量化网络 YOLOv5s se通道注意力机制 通道剪枝
下载PDF
基于YOLOv5s网络改进的钢铁表面缺陷检测算法 被引量:2
4
作者 杨涛 刘美 +3 位作者 孟亚男 张斐 刘世杰 莫常春 《机床与液压》 北大核心 2024年第4期19-26,共8页
针对目前钢铁表面缺陷检测算法存在检测精度低、检测速度慢和模型复杂度高等问题,提出基于YOLOv5s改进的钢铁表面缺陷检测算法。将SE通道注意力模块融入骨干网络中以增大缺陷特征通道权重,降低背景干扰,提高算法对缺陷特征的提取能力;... 针对目前钢铁表面缺陷检测算法存在检测精度低、检测速度慢和模型复杂度高等问题,提出基于YOLOv5s改进的钢铁表面缺陷检测算法。将SE通道注意力模块融入骨干网络中以增大缺陷特征通道权重,降低背景干扰,提高算法对缺陷特征的提取能力;在颈部网络融入STR多头自注意力模块,提高缺陷边缘纹理等细节特征的比重;改进损失函数为SIoU,缩短预测框回归收敛过程以提高算法检测速度。实验结果表明:改进算法在NEU-DET数据集上的mAP值为80.4%,较YOLOv5s提高5.5%,每秒处理帧数为100,算法体积降低约8.3%,算法计算量降低约4.3%,对比其他的目标检测算法,改进算法在检测精度、检测速度上均明显提升,模型复杂度降低明显。改进算法可满足实时钢铁表面缺陷检测需求。 展开更多
关键词 钢铁表面缺陷 se通道注意力模块 STR模块 检测算法
下载PDF
基于YOLO v4优化的航拍绝缘子缺陷图像检测模型 被引量:9
5
作者 霍超 谷晓钢 +1 位作者 黄玲琴 栾声扬 《电子测量技术》 北大核心 2023年第9期175-181,共7页
针对现有绝缘子缺陷检测模型检测精度低、实时性差和网络参数多的问题,提出了一种基于YOLO v4改进的绝缘子缺陷检测模型。首先,利用改进的VGG卷积神经网络实现了主干特征提取。其次,在加强特征提取网络和预测网络中引入深度可分离卷积,... 针对现有绝缘子缺陷检测模型检测精度低、实时性差和网络参数多的问题,提出了一种基于YOLO v4改进的绝缘子缺陷检测模型。首先,利用改进的VGG卷积神经网络实现了主干特征提取。其次,在加强特征提取网络和预测网络中引入深度可分离卷积,降低了模型的复杂度。再次,在加强特征提取网络中融合通道注意力机制对重要特征进行增强,提升了模型对绝缘子缺陷的目标辨识能力。最后,以平均精度、帧率、参数量等作为评价指标,对基于公共数据集CPLID构建的新数据集进行了消融实验和对比实验。实验结果表明,改进的YOLO v4模型对绝缘子缺陷的检测精度为98.35%,相比于传统的YOLO v4模型提高了6.4%,并且其检测速度和参数量分别为传统YOLO v4模型的1.5倍和37.5%,可实现对航拍绝缘子缺陷图像的高精度实时有效检测。同时,改进的模型相比YOLO v5-M和Faster R-CNN模型在检测精度,速度和模型复杂度上也更具优势。 展开更多
关键词 绝缘子缺陷检测 YOLO v4模型 se通道注意力机制 轻量化 深度可分离卷积
下载PDF
基于SE-ConvLSTM的时空特征融合SAR图像海冰分类 被引量:4
6
作者 葛梦滢 高稳 +2 位作者 祝敏 郭伟其 宋巍 《遥感技术与应用》 CSCD 北大核心 2023年第6期1306-1316,共11页
基于合成孔径雷达(SAR)图像的海冰分类已经成为海冰监测的重要基础,但现有方法往往利用图像空间特征,很少考虑时间特征。提出了一种融合时空特征的SAR图像海冰分类网络SEConvLSTM。首先使用ConvLSTM对HH和HV极化图像分别提取时空特征,... 基于合成孔径雷达(SAR)图像的海冰分类已经成为海冰监测的重要基础,但现有方法往往利用图像空间特征,很少考虑时间特征。提出了一种融合时空特征的SAR图像海冰分类网络SEConvLSTM。首先使用ConvLSTM对HH和HV极化图像分别提取时空特征,然后将提取的不同层次和通道的时空特征进行拼接,并利用SE通道注意力进行通道特征响应的自适应重新校准,最后利用SoftMax函数进行图像分类。将SI-STSAR-7数据集6个时间步长的图像块作为输入对所提方法与其他分类方法进行了对比实验。结果显示:SE-ConvLSTM在总体情况和分类困难的厚一年冰上分别达到了97.06%和90.01%的精度,表明加入时间信息有助于提高分类准确率。同时,所提网络在生成海冰分布图时对主要冰类型密集度较低的区域和SAR影像的边界位置都具有更好的识别能力。 展开更多
关键词 SAR 海冰分类 时空特征 ConvLSTM se通道注意力
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部