The semiempirical AMI method, ah initio (HF/3-21G, 6-31G, 6-31G(d), 6-31+G(d)) and DFT (B3LYP/6-31G(d), 6-31+G(d)) methods were used to optimize the geometry of DDQ and its anion radical DDQ-. Nelsen’s model was used...The semiempirical AMI method, ah initio (HF/3-21G, 6-31G, 6-31G(d), 6-31+G(d)) and DFT (B3LYP/6-31G(d), 6-31+G(d)) methods were used to optimize the geometry of DDQ and its anion radical DDQ-. Nelsen’s model was used to calculate the internal reorganization energy λi of self-exchange electron transfer (ET) reactions. The calculated λi results of DDQ/DDQ-. by AM1 and B3LYP/ 6-31G(d), 6-31+G(d) methods are close to each other and consistent with the reported values; while those from Har-tree-Fock methods are too large because of not consideringthe effect of electron correlation. The structure and ET behavior of MQ0 /MQ0- couple were studied by AM1 and DFT (B3LYP/6-31G(d), 6-31+ G(d, p)) methods, and those of MQ0 /MQn-(n=1-7) were studied by AM1 method for the first time. The results indicate that the values of the heat of formation of MQn increases with the increasing of the length of the isoamylene substituent chains. It also shows that the length of substituent has little effect on the bond lengths,展开更多
Reported here are several new calculation methods for the inner-sphere reorganization energy of hydrated metal ions involved in electron transfer processes.It is based on the self-exchange model of reorganization and ...Reported here are several new calculation methods for the inner-sphere reorganization energy of hydrated metal ions involved in electron transfer processes.It is based on the self-exchange model of reorganization and utilizes the more exact potential functions between central metal ion and the inner-sphere ligands.The parameters involved are determined via the spectroscopic and thermodynamic data.The predictions of the inner-sphere reorganization energies from those models agree well with the photoemission experimental results.展开更多
基金This work was supportedby the National Natural Science Foundation of China (Grant Nos. 29733100 and 39890390) and the State Key Basic Research and Development Plan (Grant No. G1998010100).
文摘The semiempirical AMI method, ah initio (HF/3-21G, 6-31G, 6-31G(d), 6-31+G(d)) and DFT (B3LYP/6-31G(d), 6-31+G(d)) methods were used to optimize the geometry of DDQ and its anion radical DDQ-. Nelsen’s model was used to calculate the internal reorganization energy λi of self-exchange electron transfer (ET) reactions. The calculated λi results of DDQ/DDQ-. by AM1 and B3LYP/ 6-31G(d), 6-31+G(d) methods are close to each other and consistent with the reported values; while those from Har-tree-Fock methods are too large because of not consideringthe effect of electron correlation. The structure and ET behavior of MQ0 /MQ0- couple were studied by AM1 and DFT (B3LYP/6-31G(d), 6-31+ G(d, p)) methods, and those of MQ0 /MQn-(n=1-7) were studied by AM1 method for the first time. The results indicate that the values of the heat of formation of MQn increases with the increasing of the length of the isoamylene substituent chains. It also shows that the length of substituent has little effect on the bond lengths,
基金Supported by the Natural Science Foundation of Shandong Province
文摘Reported here are several new calculation methods for the inner-sphere reorganization energy of hydrated metal ions involved in electron transfer processes.It is based on the self-exchange model of reorganization and utilizes the more exact potential functions between central metal ion and the inner-sphere ligands.The parameters involved are determined via the spectroscopic and thermodynamic data.The predictions of the inner-sphere reorganization energies from those models agree well with the photoemission experimental results.