期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Tribological Behavior of Ni-based Self-lubricating Composites with the Addition of Ti3SiC2 and Ag2W2O7
1
作者 冯四平 ZHOU Xincong ZHANG Qiaoxin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期698-706,共9页
The tribological properties of Nickel-based composites containing Ti3SiC2 and Ag2W2O7 fabricated by spark plasma sintering against Si3N4 balls were investigated using a ball-on-disk tribometer from room temperature to... The tribological properties of Nickel-based composites containing Ti3SiC2 and Ag2W2O7 fabricated by spark plasma sintering against Si3N4 balls were investigated using a ball-on-disk tribometer from room temperature to 600℃. The tribolayers formed on the friction surface and their effects on the tribological properties of composites at different temperatures were discussed based on the worn surface characterization. The results show that Ag2W2O7 is decomposed into metallic silver and CrWO4 during the high-temperature fabrication process. The composite with the addition of 20 wt% Ti3SiC2 and 5 wt% Ag2W2O7 exhibits a friction coefficient of 0.33-0.49 and a wear rate of 7.07x 10~5-9.89x 10~5 mm3/(Nm) over a wide temperature range from room temperature to 600℃. The excellent tribological properties at a wide temperature range are attributed to the formation of a glaze layer at low temperature and a tribooxide layer at high temperature, which can provide a low shearing strength for the synergistic effects of Ag and tribooxides. 展开更多
关键词 nickel-based composite self-lubrication WEAR TRIBOLAYER SYNERGISTIC effect
下载PDF
Effects of Friction Heat on the Tribological Properties of the Woven Self-lubricating Liner 被引量:12
2
作者 YANG Yulin ZU Dalei +1 位作者 ZHANG Ruijun QI Xiaowen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期918-924,共7页
In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It... In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It has important value to study on the relationship between tribological performances of the liner and the friction heat. Unfortunately, up to now, published work on this relationship is quite scarce. Therefore, the effect of friction heat on the tribological performances of the liner was investigated in the present work. The tribological behaviors of the liner were evaluated by using the high temperature end surface wear tester. Scanning electron microscopy (SEM) was utilized to examine the morphologies of worn surfaces of the liner and study the failure modes. Differential scanning calorimetry (DSC) measurement and X-ray diffraction (XRD) analysis were performed to study the behaviors of the wear debris. The temperature rise on the worn surface was calculated according to classical models. SEM observation shows that the dominating wear mechanism for the liner is mainly affected by friction shear force, contact pressure and friction heat. Higher fusion heat for the wear debris than that for the pure polytetrafluroethylene (PTFE) indicates that the PTFE is the main portion of the wear debris, and, the PTFE in the wear debris shows a higher crystallisation degree owing to the effects of friction shear force and the friction heat. Combining the calculated temperature rise results with the wear rate of the liner, it can be concluded that the effects of temperature rise on the tribological performances of the liner become more obvious when the temperature rise exceeds the glass transition temperature (Tg) of the PTFE. The wear resistance of the liner deteriorates dramatically when the temperature rise approaches to the melting point (Ton) of the PTFE. The tribological performances of the liner can be improved when the temperature rise exceeds Tg but is far lower than Ton. The present study on the relationship between the temperature rise and the tribological performances of the liner may provide the basis for further understanding of the wear mechanisms of the liner as well as the relationship between the formation of the PTFE transfer film and the friction heat during the dry-sliding of the liner. 展开更多
关键词 woven fabric self-lubricating liner friction and wear friction heat differential scanning calorimetry thermal analysis transfer film
下载PDF
Thermal Error Compensation of the Wear-Depth Real-Time Detecting of Self-Lubricating Spherical Plain Bearings 被引量:1
3
作者 Zhan-Qi Hu Wei Li +2 位作者 Yu-Lin Yang Bing-Li Fan Hai-Li Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期35-47,共13页
The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of t... The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of the wear?depth detecting system of bearing test benches and then a ect the accuracy of the wear?depth detecting data. However, few researches about the spherical plain bearing test benches can be found with the implementation of the detect?ing error compensation. Based on the self?made modular spherical plain bearing test bench, two main causes of ther?mal errors, the friction heat of bearings and the environmental temperature variation, are analysed. The thermal errors caused by the friction heat of bearings are calculated, and the thermal deformation of the wear?depth detecting sys?tem caused by the varying environmental temperatures is detected. In view of the above results, the environmental temperature variation is the main cause of the two error factors. When the environmental temperatures rise is 10.3 °C, the thermal deformation is approximately 0.01 mm. In addition, the comprehensive compensating model of the thermal error of the wear?depth detecting system is built by multiple linear regression(MLR) and time series analysis. Compared with the detecting data of the thermal errors, the comprehensive compensating model has higher fitting precision, and the maximum residual is only 1 μm. A comprehensive compensating model of the thermal error of the wear?depth detecting system is proposed, which provides a theoretical basis for the improvement of the real?time wear?depth detecting precision of the spherical plain bearing test bench. 展开更多
关键词 self-lubricating spherical plain bearing Wear depth Bearing test bench Thermal error Error compensation
下载PDF
Progresses on cryo-tribology:lubrication mechanisms,detection methods and applications
4
作者 Wenyan Cui Hongzhan Chen +3 位作者 Jianxun Zhao Quansheng Ma Qiang Xu Tianbao Ma 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期62-88,共27页
Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels,liquid fuel rockets,space infrared teles... Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels,liquid fuel rockets,space infrared telescopes,superconducting devices,and planetary exploration,which require solid lubrication for moving parts at low temperatures down to 4 K in cryogenic liquid,gaseous,or vacuum environments.Herein,the research progress regarding cryo-tribology is reviewed.The tribological properties and mechanisms of solid lubricants listed as carbon materials,molybdenum disulfide,polymers,and polymer-based composites with decreasing temperature are summarized.The friction coefficient increases with decreasing temperature induced by thermally activated processes.The mechanism of transfer film formation should be considered as a significant way to enhance the tribological properties of solid lubricants.In addition,applications of solid lubrication on moving parts under cryogenic conditions,such as spherical plain bearings and roller bearings,are introduced.The technology for tribological testing of materials and bearings at cryogenic temperatures is summarized,where the environmental control,motion and loading realization,as well as friction and wear measurement together in a low-temperature environment,result in the difficulties and challenges of the low-temperature tribotester.In particular,novel technologies and tribotesters have been developed for tribotests and tribological studies of solid lubricants,spherical plain bearings,and roller bearings,overcoming limitations regarding cooling in vacuum and resolution of friction measurement,among others,and concentrating on in-situ observation of friction interface.These not only promote a deep understanding of friction and wear mechanism at low temperatures,but also provide insights into the performance of moving parts or components in cryogenic applications. 展开更多
关键词 low temperature CRYOGENIC tribotester self-lubricating materials BEARING
下载PDF
Fabrication of in-situ synthesized ceramic reinforced Ni-based alloy composite coatings by reactive braze coating processing 被引量:3
5
作者 裴新军 刘文彬 +3 位作者 程铬 潘新宇 李爱娜 李海深 《China Welding》 EI CAS 2019年第4期56-62,共7页
In-situ synthesized ceramic such as TiC,Cr7C3 and Cr5B3 reinforced Ni-based alloy composite coating was fabricated on the surface of mild steel substrate by reactive braze coating processing with colloidal graphite,Cr... In-situ synthesized ceramic such as TiC,Cr7C3 and Cr5B3 reinforced Ni-based alloy composite coating was fabricated on the surface of mild steel substrate by reactive braze coating processing with colloidal graphite,Cr,Ni,ferro-boron,Si and titanium powders as the raw materials at low temperature of 1000℃,and a new kind of coating materials was developed.By means of SEM,EDS,XRD and surface hardness tester,the microstructures,phases,hardness and wear-resistance of the coating were analyzed,respectively.The results revealed that the coating was mainly composed of the ceramic in-situ synthesized reinforcement phases of TiC,Cr7C3 and Cr5B3 and the binder phases in-situ synthesized of Ni31Si12 and(Ni,Fe)solid solution;The ceramic reinforcement phases of TiC,Cr7C3 and Cr5B3 were randomly distributed in the binder phases of Ni31Si12 and(Ni,Fe)solid solution;The coating had about 15vol%pores and can possibly be applied as a self-lubrication coating;The coating and the substrate were integrated together by metallurgical bonding;The coating had a hardness up to 91-94HR15N. 展开更多
关键词 reactive braze coating processing composite coating Ni-based alloy CERAMIC self-lubrication coating
下载PDF
Effect of graphite contents on friction and wear properties of Ni-Cr-W composites
6
作者 李建亮 熊党生 戴俊峰 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期171-175,共5页
Ni-based alloy/W/graphite self-lubricating composites with different graphite addition amounts were prepared using PM (powder metallurgy) method. It is found that the addtion of graphite can increase the tensile str... Ni-based alloy/W/graphite self-lubricating composites with different graphite addition amounts were prepared using PM (powder metallurgy) method. It is found that the addtion of graphite can increase the tensile strength and hardness, while the bending strength decreases. The tribological properties of the composites when rubbing with Al2O3 ceramic disc were investigated in the temperature range of 20600℃. The results show that the tribological properties of the alloy are improved by adding graphite. When the graphite content is up to 9%, the friction coefficient at 600℃ is about 0.2, which is one third of that with no graphite. At elevated temperature, the friction coefficients change a little with velocity and load. At room temperature, graphite extruded from the composite plays the the role of lubrication. The synergistic effect of oxide films and graphite are responsible for the reduction of friction coefficient at high temperature. 展开更多
关键词 Ni/graphite composite POWDER METALLURGY high temperature self-lubrication
下载PDF
Computer Aided Modeling and Deign of a New Magnetic Sealing Mechanism in Engineering Applications
7
作者 Z. LI 《Engineering(科研)》 2010年第1期22-27,共6页
This article introduces a new type of magnetic sealing mechanism that reduces the lubrication oil pollution and media gaseous leakage in general reciprocating machinery including air compressors and refrigerators. The... This article introduces a new type of magnetic sealing mechanism that reduces the lubrication oil pollution and media gaseous leakage in general reciprocating machinery including air compressors and refrigerators. The feasible function and reliable performance of this new sealing mechanism are introduced and analyzed in this paper. The computer aided design, modeling and analysis are being used to study this new sealing mechanism, and the prototype of this sealing mechanism is being tested. The study indicated the proper function of this sealing mechanism. The major advantages of this sealing mechanism include: improved sealing capacity to prevent the gaseous leakage and oil leakage, simple and compact in structure, lower precision requirement on surfaces of reciprocating pistons and shafts in production and manufacturing, and longer services in sealing life span. Also there is almost no frictional loss during the reciprocating motion of piston or shaft. 展开更多
关键词 MAGNETIC SEALING MAGNETIC FLUX Reciprocating MACHINERY self-lubricated System
下载PDF
In-situ preparation of robust self-lubricating composite coating from thermally sprayed ceramic template
8
作者 Zhichao WU Shuangjian LI +3 位作者 Xiujuan FAN Florian VOGEL Jie MAO Xiaohui TU 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第2期357-372,共16页
The self-lubricating ceramic coatings that can control friction and wear have attracted researchers’widespread attention.However,the poor interfacial bonding between lubricants and ceramics and the deterioration of m... The self-lubricating ceramic coatings that can control friction and wear have attracted researchers’widespread attention.However,the poor interfacial bonding between lubricants and ceramics and the deterioration of mechanical properties due to a tribological design limit their practical applications.Here,a robust self-lubricating coating was fabricated by an in-situ synthesis of MoS_(2)/C within inherent defects of thermally sprayed yttria-stabilized zirconia(YSZ)coatings.The edge-pinning by noncoherent endows hybrid coatings with excellent interfacial strength,increasing their hardness(HV)and cohesive strength.Furthermore,owing to the formation of a well-covered robust lubricating film at a frictional interface,a coefficient of friction(COF)can be reduced by 79.6%to 0.15,and a specific wear rate(W)drops from 1.36×10^(−3) to 6.27×10^(−7) mm^(3)·N^(−1)·m^(−1).Combining outstanding mechanical properties and tribological performance,the hybrid coating exhibits great application potential in controlling friction and wear.Importantly,this strategy of introducing the target materials into the inherent defects of the raw materials to improve the relevant properties opens new avenues for the design and preparation of composite materials. 展开更多
关键词 self-lubricating ceramic coatings thermal spray in-situ synthesis MoS_(2)/C friction and wear mechanical properties
原文传递
Tribological performance of iron- and nickel-base self-lubricating claddings containing metal sulfides at high temperature
9
作者 Hector TORRES Tugce CAYKARA +3 位作者 Jens HARDELL Janne NURMINEN Braham PRAKASH Manel RODRIGUEZ RIPOLL 《Friction》 SCIE EI CAS CSCD 2022年第12期2069-2085,共17页
Iron-based coatings with the incorporation of solid lubricants have been prepared by means of laser cladding,in an effort to control friction and decrease tool wear at high temperatures during metal forming applicatio... Iron-based coatings with the incorporation of solid lubricants have been prepared by means of laser cladding,in an effort to control friction and decrease tool wear at high temperatures during metal forming applications.The choice of a Fe-based powder has been considered advantageous,as it can lead to decreased costs compared to nickel-based claddings previously studied by the authors,in addition to having a lower environmental impact.In particular,the incorporation of transition metal dichalcogenides such as MoS_(2) as precursors leads to the encapsulation of silver in Fe-based self-lubricating claddings,resulting in a uniform distribution of the soft metal across the thickness of the coating.Subsequent tribological evaluation of the claddings at high temperatures shows that the addition of lubricious compounds leads to lower friction at room temperature and significantly decreased wear up to 600℃ compared to the unmodified iron-based reference alloy,although higher than similar self-lubricating Ni-based claddings.In order to cast light into these observed differences,the corresponding microstructures,phase composition,and self-lubricating mechanisms have been studied and compared for Fe-and Ni-based claddings having both of them the addition of silver and MoS_(2).The results suggest a key role of the formation of protective tribolayers on the counter body during high temperature sliding contact.Additional simulation of the phase evolution during solidification reveals that the formation of different chromium-and nickel-based metal sulfides in Fe-and Ni-claddings during laser cladding by the decomposition of MoS_(2) plays a key role in determining their tribological behaviour at high temperatures. 展开更多
关键词 high temperature laser cladding self-lubrication metal forming chromium sulphide MoS_(2)
原文传递
Influence of service temperature on tribological characteristics of self-lubricant coatings: A review 被引量:6
10
作者 Jun-Feng YANG Yan JIANG +2 位作者 Jens HARDELL Braham PRAKASH Qian-Feng FANG 《Frontiers of Materials Science》 SCIE CSCD 2013年第1期28-39,共12页
Self-lubricating coatings have been widely used to reduce friction in moving machine assemblies. However, the tribological performance of these coatings is strongly dependent on the service temperature. In this paper,... Self-lubricating coatings have been widely used to reduce friction in moving machine assemblies. However, the tribological performance of these coatings is strongly dependent on the service temperature. In this paper, an extensive review pertaining to the influence of operating service temperature on tribological performance of self-lubricating coatings has been carried out. Based on the effective lubricating temperature range, the self-lubricating coatings developed in the past have been divided into three groups: low temperature lubricant coating (from -200℃ to room temperature), moderate temperature lubricant coating (from room temperature to 500℃) and high temperature lubricant coating (〉 500℃). Ideas concerning possible ways to extend the operating temperature range of self-lubricating coatings have been presented as follows: hybridized tribological coating, adaptive tribological coatings, and diffusion rate limited solid lubricant coating, in addition, a new self-lubricating coating formulation for potential application at a wide operating temperature range has been proposed. 展开更多
关键词 TEMPERATURE solid LUBRICANT self-lubrICATING COATING TRIBOLOGICAL PROPERTY
原文传递
Friction of metal-matrix self-lubricating composites: Relationships among lubricant content, lubricating film coverage, and friction coefficient 被引量:5
11
作者 Jinkun XIAO Yuqing WU +2 位作者 Wei ZHANG Juan CHEN Chao ZHANG 《Friction》 SCIE CSCD 2020年第3期517-530,共14页
Metal-matrix self-lubricating composites can exhibit excellent tribological properties owing to the release of solid lubricant from the matrix and the formation of a lubricating film on the tribosurface.The coverage o... Metal-matrix self-lubricating composites can exhibit excellent tribological properties owing to the release of solid lubricant from the matrix and the formation of a lubricating film on the tribosurface.The coverage of the lubricating film on a worn surface significantly influences the sliding process.However,it is difficult to quantify the film coverage owing to the thin and discontinuous character of the lubricating film and the high roughness of the worn surface.A quantitative characterization of the lubricating film coverage based on X-ray photoelectron spectroscopy(XPS)analysis was developed in this study.The friction tests of Cu-MoS2 composites with a MoS2 content of 0-40 vol%were conducted,and the worn surfaces of the composites were observed and analyzed.Further,the influence of the MoS2 volume content on the coverage of the lubricating film on the worn surface was investigated.The relationships among the volume fraction of the lubricant,coverage of the lubricating film,and the friction coefficient were established.The friction model for the metal matrix self-lubricating composites was developed and verified to facilitate the composition design and friction coefficient prediction of self-lubricating composites. 展开更多
关键词 self-lubricating composites friction coefficient lubricating film XPS
原文传递
Self-lubricate and anisotropic wear behavior of AZ91D magnesium alloy reinforced with ternary Ti_2AlC MAX phases 被引量:3
12
作者 Wenbo Yu Deqiang Chen +2 位作者 Liang Tian Hongbin Zhao Xiaojun Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期275-284,共10页
The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel dis... The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel disc. Wear rates and friction coefficients were registered during wear tests. Worn tracks and wear debris were examined by scanning electron microscopy, energy dispersive X-ray spectrometry and transmission electron microscopy in order to obtain the wear mechanisms of the studied materials. The main mechanisms were characterized as the magnesium matrix oxidation and self-lubrication of Ti_2AlC MAX phase. In all conditions, the composites exhibit superior wear resistance and self-lubricated ability than the AZ91 Mg alloy. In addition, the anisotropic mechanisms in tribological properties of textured Ti_2AlC-Mg composites were confirmed and discussed. 展开更多
关键词 TI2ALC Dry SLIDING wear Magnesium alloy self-lubricate ability
原文传递
Microstructures and high-temperature self-lubricating wearresistance mechanisms of graphene-modified WC–12Co coatings 被引量:4
13
作者 Haoliang TIAN Changliang WANG +3 位作者 Mengqiu GUO Yongjing CUI Junguo GAO Zhihui TANG 《Friction》 SCIE EI CAS CSCD 2021年第2期315-331,共17页
To reduce the friction coefficient of cobalt-cemented tungsten carbide(WC–12Co)wear-resistant coatings,graphene was compounded into WC–12Co powder via wet ball milling and spray granulation.Selflubricating and wear-... To reduce the friction coefficient of cobalt-cemented tungsten carbide(WC–12Co)wear-resistant coatings,graphene was compounded into WC–12Co powder via wet ball milling and spray granulation.Selflubricating and wear-resistant graphene coatings were prepared via detonation gun spraying.The presence,morphologies,and phase compositions of graphene in the powders and coatings that are obtained through different powder preparation processes were analyzed.The analysis was performed using the following technologies:energy-dispersive X-ray-spectroscopy(EDXS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and Raman spectroscopy.The mechanical properties of the coatings were studied using a microhardness tester and a universal drawing machine.The friction and wear properties of the coatings were studied using an SRV-4 friction and wear tester.The results showed that the graphene content in the WC–12Co coating modified with graphene was higher than that without modification;graphene was embedded in the structure in a transparent and thin-layer state.The adhesive strength of this coating at approximately 25°C was approximately 60.33 MPa,and the hardness was approximately 984 HV0.3.After high-temperature treatment,the adhesive strength and hardness of the graphene oxide(GO)/WC–12Co coating decreased slightly(the lowest adhesive strength of 53.16 MPa was observed after treatment at 400°C,and the lowest hardness of approximately 837 HV0.3 was observed after treatment at 300°C).Compared to the friction coefficient(0.6)of the WC–12Co coating obtained at room temperature,the friction coefficient of the GO/WC–12Co coating was decreased by approximately 50%of that value.The graphene-modified coating was continuously exposed to the wear tracks on the surface of the contacting materials during friction,and a lubricating film was formed in the microareas in which the wear tracks were present.The coating exhibited improved self-lubricating and wear-resistant effects compared to the unmodified WC–12Co coating.The results of this study demonstrated that graphene could be effective in self-lubrication and wear-reduction in a temperature range of 100–200°C,as a friction coefficient of 0.3 was maintained. 展开更多
关键词 GRAPHENE wear-resistant coating detonation gun spraying self-lubricating wear-resistance mechanism high-temperature friction
原文传递
Self-lubricating epoxy-based composite abradable seal coating eliminating adhesive transfer via hierarchical design 被引量:2
14
作者 Yun-qi Tong Wei Li +2 位作者 Qiu-sheng Shi Lin Chen Guan-jun Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第9期145-154,共10页
Aluminum-based composite abradable seal coatings are pivotal to improving the efficiency of aero engines or gas turbines.However,the adhesive transfer frequently occurs between metallic blade tips and aluminum-based c... Aluminum-based composite abradable seal coatings are pivotal to improving the efficiency of aero engines or gas turbines.However,the adhesive transfer frequently occurs between metallic blade tips and aluminum-based composite coatings,resulting in engine vibration and even jam.Many past studies had tried to solve this problem by reducing coating hardness,improving lubrication,or strengthening blade tips,but all had failed.In this paper,we proposed a novel epoxy-based composite abradable seal coating,eliminating adhesive transfer by changing metal-to-metal scraping pair to metal-to-polymer scraping pair.The coating was developed via a hierarchical structure design.Large spherical pores were uniformly distributed in the continuous epoxy matrix with fine graphite dispersion.By adding 20 vol.%graphite and 50 vol.%hollow microspheres,a self-lubricating epoxy-based coating of 0.26 friction coefficient with thermal conductivity of 0.28 W/(m·K),coating HR15 Y hardness at 54.8,and bonding strength at 18.7 MPa can be reached.When the metallic blades scrape the epoxy-based composite coating,no adhesive transfer occurs.Besides,a smooth scraped surface is formed by pseudoplastic deformation.This epoxy-based composite abradable seal coating opens a new way to improve the efficiency and reliable operations of air engine compressors. 展开更多
关键词 Epoxy-based composite coating Hierarchical structure design self-lubrICATING Pseudoplastic deformation
原文传递
Study on the Corrosion Properties of Several Kinds of High-temperature Solid Self-lubricating Material 被引量:1
15
作者 Guo Wenyong Zhang Haicun +2 位作者 Han Zhihai Liu Mingxia Zhi Jinhua 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第S1期207-210,共4页
In some adjusting mechanism,solid self-lubricating material that has hot-resistant and corrosion-resistant is need for adapting the work condition.In the present article,by the comparison study of mass loss and surfac... In some adjusting mechanism,solid self-lubricating material that has hot-resistant and corrosion-resistant is need for adapting the work condition.In the present article,by the comparison study of mass loss and surface topography after corrosion in acid solution and vapour of the four kinds of material,graphite,polymer,BN composite and cermet,it was found that,graphite has good corrosion-resistant to acid solution and vapour under 200℃,but the corrosion-resistant will become worse dramatically under 400℃,polymer has worse corrosion-resistant behavior above 200℃.By comparison,BN self-lubricating composite has better hot-resistant and corrosion-resistant,which can meet the demand of the work condition. 展开更多
关键词 self-lubrICATING material hot-resistant CORROSION RESISTANT
原文传递
Design and preparation of gradient graphite/cermets self-lubricating composites 被引量:1
16
作者 Liming Zhou Ji Xiong +1 位作者 Zhixing Guo Junliu Ye 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1378-1386,共9页
Based on the functionally graded materials(FGMs) design concept,the laminated-graded graphite/cermets self-lubricating composite was prepared to achieve the integration of mechanical properties and lubrication perform... Based on the functionally graded materials(FGMs) design concept,the laminated-graded graphite/cermets self-lubricating composite was prepared to achieve the integration of mechanical properties and lubrication performance of the cermet.The effects of the layer number and thickness of graded structure on residual stresses in the gradient composites were investigated by finite element method(FEM).From the FEM analyses,the optimal gradient structure design was obtained corresponding to the following parameters: the number of graded layers n = 2 and the thickness of graded structure t = 1 mm.According to the optimum design,a graded graphite/cermets self-lubricating material with two layers was fabricated by a typical powder metallurgy technique.Compared with the homogenous graphite/cermets composite,the surface hardness and indentation fracture toughness of graded composite were increased by approximately 15.9% and 6.3%,respectively.The results of X-ray diffraction(XRD)stress measurement identified the existence of residual compressive stress on the surface of graded composite.Additionally,the friction and wear tests revealed that the wear resistance of the graphite/cermets self-lubricating composite was improved significantly via the graded structural design,whereas the coefficient of friction changed slightly. 展开更多
关键词 Graphite/cermets self-lubricating material Graded structure Finite element analysis Mechanical properties Tribological performance
原文传递
High Temperature Oxidation and Tribological Behaviors of NiCrAl-Graphite Self-Lubricating Composites
17
作者 Xuan Kong Yang Liu +2 位作者 Minghui Chen Tao Zhang Fuhui Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第7期900-912,共13页
Nickel-graphite self-lubricating composites are a promising candidate to be used in turbine constructions that are usually exposed to high temperature oxidation and wear.However,the high-temperature stability of graph... Nickel-graphite self-lubricating composites are a promising candidate to be used in turbine constructions that are usually exposed to high temperature oxidation and wear.However,the high-temperature stability of graphite as well as the effect that the oxide scale will play on the following wear process are still yet in debate.In this work,oxidation behavior of a NiCrAl-graphite composite and the subsequent friction and wear performances were studied.Results indicate that graphite is stable in the composites after oxidation at T≤400℃ for 300 h,which contributes synergistically with the thin oxide film to self-lubrication.The friction coefficient is below 0.20 and the wear rate is~1.43×10^(-5) mm³ N-1 m-1.The composite has the highest friction coefficient and wear rate when it was suffered from the high temperature oxidation at 500℃.Once it was oxidized at 600℃,a glaze layer would develop during the subsequent sliding.It plays a positive role in improving tribological properties though in the absence of lubricant phase of graphite,with to be exactly the friction coefficient and wear rate reduced by 13%and 21%,respectively,in comparison with the case of oxidation at 500℃. 展开更多
关键词 OXIDATION self-lubricating composites WEAR GRAPHITE
原文传递
Improving high-temperature wear resistance of NiCr matrix self-lubricating composites by controlling oxidation and surface texturing
18
作者 Xuan Kong Wenyao Sun +3 位作者 Qunchang Wang Minghui Chen Tao Zhang Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第36期253-263,共11页
Self-lubricating composites(SLCs)are widely used in the fields of aerospace and marine,but the conventional NiCr matrix SLCs with sulfide as solid lubricant often suffer from low wear resistance at high temperatures.I... Self-lubricating composites(SLCs)are widely used in the fields of aerospace and marine,but the conventional NiCr matrix SLCs with sulfide as solid lubricant often suffer from low wear resistance at high temperatures.In view of its high affinity with oxygen and also the high oxidation rate,appropriate amount of nano Ti was added to NiCr-WS_(2)composites prepared by spark plasma sintering(SPS)to adjust the oxidation behavior and surface texture.When exposed to high temperature,Ti was preferentially oxidized in comparison to Ni and Cr,resulting in abundant TiO_(2)protrusions and microdimples on the surface,i.e.in situ surface texturing.Besides,TiO_(2)was of high chemical activity and readily to react with other oxide debris during high temperature sliding process to form compounds of NiTiO_(3)and CrTi_(2)O_(5).The high chemical activity of oxide debris that was conducive to sintering,combining with the special surface texture that stores as many wear debris as possible,promoted the rapid formation of a protective glaze layer on the sliding surface.The NiCr-WS_(2)-Ti composite exhibited low friction coefficient but high wear resistance at elevated temperatures.Especially at 800℃,it presented a wear rate of as low as(2.1±0.3)×10^(-5)mm^3N-1m^(-1),accounting for only 2.7%of that of NiCr-WS_(2)composite. 展开更多
关键词 self-lubricating composites High temperature oxidation Glaze layer Surface texturing
原文传递
Bioinspired PcBN/hBN fibrous monolithic ceramic:High-temperature crack resistance responses and self-lubricating performances
19
作者 Shu-na CHEN Hengzhong FAN +4 位作者 Yunfeng SU Jicheng LI Junjie SONG Litian HU Yongsheng ZHANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第9期1391-1403,共13页
The high strength and toughness of natural materials are mainly determined by a combination of mechanisms operating at different length scales,which can be used as a strategy to reduce the intrinsic brittleness of cer... The high strength and toughness of natural materials are mainly determined by a combination of mechanisms operating at different length scales,which can be used as a strategy to reduce the intrinsic brittleness of ceramics.Inspired by the architectures of bamboo,the polycrystalline cubic boron nitride/hexagonal boron nitride(PcBN/hBN)fibrous monolithic ceramics with a long fiber arrangement structure was constructed with PcBN fiber cells and hBN cell boundaries,and its crack resistance responses and tribological performances were investigated.The composite ceramic failed in a non-brittle manner with the rising resistance curve(R-curve)behavior,which was attributed to multiscale crack effects in the hierarchical architecture.The maximum crack growth toughness was extremely high(approximately 21 MPa×m^(1/2)),corresponding to a 270%increase over the crack initiation toughness.Excellent fracture resistance could be retained even above 1000℃.Moreover,the composite ceramic exhibited low and stable friction coefficients(approximately 0.33)when paired with a Si_(3)N_(4)pin at high temperature(1000℃),owing to the lubrication function of hBN cell boundaries with weak van der Waals forces and a small amount of liquid B_(2)O_(3)produced.As a result,a synergistic improvement of mechanical and tribological properties at high temperature(1000℃)was realized by combining bionic structure and tribological design.It provides important theoretical and technical support for expanding the application of self-lubricating composite ceramics in harsh environments. 展开更多
关键词 self-lubricating composite ceramic bioinspired structure resistance curve(R-curve) high-temperature property friction and wear
原文传递
Tribological properties of plasma-sprayed nickel alloy matrix self-lubricating coating at elevated temperatures
20
作者 Wen-Sheng Li Yang Sun +5 位作者 Wei Hu Sheng-Yu Zhu Hai-Min Zhai Jun Yang Xiang-Juan Fan Wei-Min Liu 《Rare Metals》 CSCD 2021年第7期1844-1850,共7页
A nickel alloy matrix high-temperature self-lubricating coating(77.5 wt%(Ni-Cr-Mo-Al)-12.5 wt%Ag-10 wt%BaF2/CaF2)was prepared by plasma spraying technique.Results show that the Vickers microhardness of coating is(2.9&... A nickel alloy matrix high-temperature self-lubricating coating(77.5 wt%(Ni-Cr-Mo-Al)-12.5 wt%Ag-10 wt%BaF2/CaF2)was prepared by plasma spraying technique.Results show that the Vickers microhardness of coating is(2.9±0.5)GPa,and the average bonding strength is about(35.6±0.5)MPa.The coating rubbing against Inconel 718 superalloy pin exhibits superior tribological performance with coefficient of friction(COF)of below 0.25 and wear rate of 8.2×10^(-5)-15.2×10^(-5)mm^(3)·N^(-1)·m^(-1)at a wide temperature range from 25 to 800℃,and the COF and the wear rate are slightly reduced with temperature increasing.The low COF and wear rate were attributed to the synergistic effects of Ag,BaF_(2)/CaF_(2),Ag2MoO_(4)and BaMoO_(4). 展开更多
关键词 COATING Tribological behavior High temperature self-lubrICATING
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部