The Bayesian structural equation model integrates the principles of Bayesian statistics, providing a more flexible and comprehensive modeling framework. In exploring complex relationships between variables, handling u...The Bayesian structural equation model integrates the principles of Bayesian statistics, providing a more flexible and comprehensive modeling framework. In exploring complex relationships between variables, handling uncertainty, and dealing with missing data, the Bayesian structural equation model demonstrates unique advantages. Therefore, Bayesian methods are used in this paper to establish a structural equation model of innovative talent cognition, with the measurement of college students’ cognition of innovative talent being studied. An in-depth analysis is conducted on the effects of innovative self-efficacy, social resources, innovative personality traits, and school education, aiming to explore the factors influencing college students’ innovative talent. The results indicate that innovative self-efficacy plays a key role in perception, social resources are significantly positively correlated with the perception of innovative talents, innovative personality tendencies and school education are positively correlated with the perception of innovative talents, but the impact is not significant.展开更多
Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analys...Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analysis and path analysis.Meta-analytic structural equation modeling(MASEM)combines meta-analysis and structural equation modeling.It allows researchers to explain relationships among a group of variables across multiple studies.Methods:We used a simulated dataset to conduct a univariate MASEM analysis,using Comprehensive Meta Analysis 3.3,Analysis of Moment Structures 24.0 software.Results:Despite the lack of concise literature on the methodology,our study provided a practical step-by-step guide on univariate MASEM.Conclusion:Researchers can employ MASEM analysis in applicable fields based on the description,principles,and practices expressed in this study and our previous publications mentioned in this study.展开更多
With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching a...With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching ability.This study takes normal students of English majors from three ethnic universities as the research object,collects relevant data through questionnaires,and uses structural equation modeling to conduct data analysis and empirical research to investigate the differences in the TPACK levels of these students at different grades and the structural relationships among the elements in the TPACK structure.The technological pedagogical knowledge element of the TPACK structure was not obtained by exploratory factors analysis but through path analysis and structural equation modeling,the results show that the one-dimensional core knowledge of technological knowledge(TK),content knowledge(CK),and pedagogical knowledge(PK)have a positive effect on the two-dimensional interaction knowledge of technological content knowledge(TCK)and pedagogical content knowledge(PCK);furthermore,TCK and PCK have a positive effect on TPACK;and TK,CK,and PK indirectly affect TPACK through TCK and PCK.On this basis,suggestions are provided to ethnic colleges and universities to develop the TPACK knowledge competence of normal students of English majors.展开更多
With the expanding enrollments in higher education,the quality of col-lege education and the learning gains of students have attracted much attention.It is important to study the influencing factors and mechanisms of ...With the expanding enrollments in higher education,the quality of col-lege education and the learning gains of students have attracted much attention.It is important to study the influencing factors and mechanisms of individual stu-dents’acquisition of learning gains to improve the quality of talent cultivation in colleges.However,in the context of information security,the original data of learning situation surveys in various universities involve the security of educa-tional evaluation data and daily privacy of teachers and students.To protect the original data,data feature mining and correlation analyses were performed at the model level.This study selected 12,181 pieces of data from X University,which participated in the Chinese College Student Survey(CCSS)from 2018 to 2021.A confirmatory factor analysis was conducted and a structural equation modeling was conducted using AMOS 24.0.Through hypothesis testing,this study explored the mechanisms that influence learning gains from the per-spectives of student involvement,teacher involvement,and school support.The results indicated that the quality of student involvement has an important mediat-ing effect on learning gains and that a supportive campus environment has the greatest influence on learning gains.Establishing positive emotional communica-tions between teachers and students is a more direct and effective method than improving the teaching level to improve the quality of student involvement.This study discusses the implications of these results on the research and practice of connotative development in higher education.展开更多
Objective: With the goal of improving health-related quality of life (HRQOL) in cancer patients, we previously reported a structural equation model (SEM) of subjected QOL and qualifications of pharmacists, based on a ...Objective: With the goal of improving health-related quality of life (HRQOL) in cancer patients, we previously reported a structural equation model (SEM) of subjected QOL and qualifications of pharmacists, based on a series of questionnaires completed by patients and pharmacists. However, several patients and pharmacists were excluded from the previous study because it was not always possible to obtain all the data intended for collection. In order to reveal the effect of missing data on the SEM, we established SEMs of HRQOL and the competency of pharmacists, using correlation matrices derived by two different statistical methods for handling missing data. Method: Fifteen cancer patients hospitalized for cancer and were receiving opioid analgesics for pain control, and eight pharmacists were enrolled in this study. Each subject was asked four times weekly to answer questions presented in a questionnaire. SEMs were explored using two correlation matrices derived with pair-wise deletion (PD matrix) and list-wise deletion (LD matrix). The final models were statistically evaluated with certain goodness-of-fit criteria. Results: Data were intended to be collected four times weekly for each patient, but there were some missing values. The same SEMs for HRQOL were optimized using both the LD and PD matrices. Although the path diagrams of the SEMs were not identical in the “competency of pharmacists,” the two models suggested that a higher competency of a pharmacist lowered the “severity” of condition and increased the “comfort” of patients, resulting in an increase in the subjected QOL. Conclusion: In collecting data for clinical research, missing values are unavoidable. When the structure of the model was robust enough, the missing data had a minor effect on our SEM of QOL. In QOL research, the LD matrix as well as the PD matrix would be effective, provided the model is sufficiently robust.展开更多
Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics.In this paper,investigation was made through the applicatio...Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics.In this paper,investigation was made through the application of structural equation modeling to study the nature of relationships between the influencing/associating personal factors and work injury and their sequential relationships leading towards work injury occurrences in underground coal mines.Six variables namely,rebelliousness,negative affectivity,job boredom,job dissatisfaction and work injury were considered in this study.Instruments were developed to quantify them through a questionnaire survey.Underground mine workers were randomly selected for the survey.Responses from 300 participants were used for the analysis.The structural model of LISREL was used to estimate the interrelationships amongst the variables.The case study results show that negative affectivity and job boredom induce more job dissatisfaction to the workers whereas risk taking attitude of the individual is positively influenced by job dissatisfaction as well as by rebelliousness characteristics of the individual.Finally,risk taking and job dissatisfaction are having positive significant direct relationship with work injury.The findings of this study clearly reveal that rebelliousness,negative affectivity and job boredom are the three key personal factors influencing work related injuries in mines that need to be addressed properly through effective safety programs.展开更多
A households′production behavior directly influences the quality of the environment and determines the successful development of nature reserves.Meanwhile,the households′production behaviors are complicated by inter...A households′production behavior directly influences the quality of the environment and determines the successful development of nature reserves.Meanwhile,the households′production behaviors are complicated by interrelated factors,such as protection attitudes,resource endowment,and family wealth.This research evaluated households near the Crested Ibis National Nature Reserve in Shaanxi Province,acquiring data from 436 households around Yang County and Ningshan County in the south slope of Qinling Mountains,China.Based on the collected data,we developed a structural equation model to evaluate the coupling relationships among households′ protection attitudes,production behaviors,resource endowment,and family wealth.The results showed that:1) households with great resource endowment had more negative attitudes,probably due to their greater protection costs;2) the households with higher education levels had worse protection attitudes;3) the households with more family wealth were likely to use fewer fertilizers,pesticides,and firewood;4) the households with more resource endowment showed less production and management behaviors;5) the enhancement of households' attitudes improved production behaviors to protection the environment,but the effects were not statistically significant.Our results provide a basis for the government's protection policy making,exploring the effective management measures that are beneficial for both nature reserve management and community development.展开更多
文摘The Bayesian structural equation model integrates the principles of Bayesian statistics, providing a more flexible and comprehensive modeling framework. In exploring complex relationships between variables, handling uncertainty, and dealing with missing data, the Bayesian structural equation model demonstrates unique advantages. Therefore, Bayesian methods are used in this paper to establish a structural equation model of innovative talent cognition, with the measurement of college students’ cognition of innovative talent being studied. An in-depth analysis is conducted on the effects of innovative self-efficacy, social resources, innovative personality traits, and school education, aiming to explore the factors influencing college students’ innovative talent. The results indicate that innovative self-efficacy plays a key role in perception, social resources are significantly positively correlated with the perception of innovative talents, innovative personality tendencies and school education are positively correlated with the perception of innovative talents, but the impact is not significant.
文摘Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analysis and path analysis.Meta-analytic structural equation modeling(MASEM)combines meta-analysis and structural equation modeling.It allows researchers to explain relationships among a group of variables across multiple studies.Methods:We used a simulated dataset to conduct a univariate MASEM analysis,using Comprehensive Meta Analysis 3.3,Analysis of Moment Structures 24.0 software.Results:Despite the lack of concise literature on the methodology,our study provided a practical step-by-step guide on univariate MASEM.Conclusion:Researchers can employ MASEM analysis in applicable fields based on the description,principles,and practices expressed in this study and our previous publications mentioned in this study.
文摘With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching ability.This study takes normal students of English majors from three ethnic universities as the research object,collects relevant data through questionnaires,and uses structural equation modeling to conduct data analysis and empirical research to investigate the differences in the TPACK levels of these students at different grades and the structural relationships among the elements in the TPACK structure.The technological pedagogical knowledge element of the TPACK structure was not obtained by exploratory factors analysis but through path analysis and structural equation modeling,the results show that the one-dimensional core knowledge of technological knowledge(TK),content knowledge(CK),and pedagogical knowledge(PK)have a positive effect on the two-dimensional interaction knowledge of technological content knowledge(TCK)and pedagogical content knowledge(PCK);furthermore,TCK and PCK have a positive effect on TPACK;and TK,CK,and PK indirectly affect TPACK through TCK and PCK.On this basis,suggestions are provided to ethnic colleges and universities to develop the TPACK knowledge competence of normal students of English majors.
基金This work was supported by the Education Department of Henan,China.The fund was obtained from the general project of the 14th Plan of Education Science of Henan Province in 2021(No.2021YB0037).
文摘With the expanding enrollments in higher education,the quality of col-lege education and the learning gains of students have attracted much attention.It is important to study the influencing factors and mechanisms of individual stu-dents’acquisition of learning gains to improve the quality of talent cultivation in colleges.However,in the context of information security,the original data of learning situation surveys in various universities involve the security of educa-tional evaluation data and daily privacy of teachers and students.To protect the original data,data feature mining and correlation analyses were performed at the model level.This study selected 12,181 pieces of data from X University,which participated in the Chinese College Student Survey(CCSS)from 2018 to 2021.A confirmatory factor analysis was conducted and a structural equation modeling was conducted using AMOS 24.0.Through hypothesis testing,this study explored the mechanisms that influence learning gains from the per-spectives of student involvement,teacher involvement,and school support.The results indicated that the quality of student involvement has an important mediat-ing effect on learning gains and that a supportive campus environment has the greatest influence on learning gains.Establishing positive emotional communica-tions between teachers and students is a more direct and effective method than improving the teaching level to improve the quality of student involvement.This study discusses the implications of these results on the research and practice of connotative development in higher education.
文摘Objective: With the goal of improving health-related quality of life (HRQOL) in cancer patients, we previously reported a structural equation model (SEM) of subjected QOL and qualifications of pharmacists, based on a series of questionnaires completed by patients and pharmacists. However, several patients and pharmacists were excluded from the previous study because it was not always possible to obtain all the data intended for collection. In order to reveal the effect of missing data on the SEM, we established SEMs of HRQOL and the competency of pharmacists, using correlation matrices derived by two different statistical methods for handling missing data. Method: Fifteen cancer patients hospitalized for cancer and were receiving opioid analgesics for pain control, and eight pharmacists were enrolled in this study. Each subject was asked four times weekly to answer questions presented in a questionnaire. SEMs were explored using two correlation matrices derived with pair-wise deletion (PD matrix) and list-wise deletion (LD matrix). The final models were statistically evaluated with certain goodness-of-fit criteria. Results: Data were intended to be collected four times weekly for each patient, but there were some missing values. The same SEMs for HRQOL were optimized using both the LD and PD matrices. Although the path diagrams of the SEMs were not identical in the “competency of pharmacists,” the two models suggested that a higher competency of a pharmacist lowered the “severity” of condition and increased the “comfort” of patients, resulting in an increase in the subjected QOL. Conclusion: In collecting data for clinical research, missing values are unavoidable. When the structure of the model was robust enough, the missing data had a minor effect on our SEM of QOL. In QOL research, the LD matrix as well as the PD matrix would be effective, provided the model is sufficiently robust.
文摘Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics.In this paper,investigation was made through the application of structural equation modeling to study the nature of relationships between the influencing/associating personal factors and work injury and their sequential relationships leading towards work injury occurrences in underground coal mines.Six variables namely,rebelliousness,negative affectivity,job boredom,job dissatisfaction and work injury were considered in this study.Instruments were developed to quantify them through a questionnaire survey.Underground mine workers were randomly selected for the survey.Responses from 300 participants were used for the analysis.The structural model of LISREL was used to estimate the interrelationships amongst the variables.The case study results show that negative affectivity and job boredom induce more job dissatisfaction to the workers whereas risk taking attitude of the individual is positively influenced by job dissatisfaction as well as by rebelliousness characteristics of the individual.Finally,risk taking and job dissatisfaction are having positive significant direct relationship with work injury.The findings of this study clearly reveal that rebelliousness,negative affectivity and job boredom are the three key personal factors influencing work related injuries in mines that need to be addressed properly through effective safety programs.
基金Under the auspices of Forestry Industry Research Special Funds for Public Welfare Projects(No.201004008)National Natural Science Foundation of China(No.71003007)Research Program of Food and Agriculture Organization(No.CHN/2011/077/LOA)
文摘A households′production behavior directly influences the quality of the environment and determines the successful development of nature reserves.Meanwhile,the households′production behaviors are complicated by interrelated factors,such as protection attitudes,resource endowment,and family wealth.This research evaluated households near the Crested Ibis National Nature Reserve in Shaanxi Province,acquiring data from 436 households around Yang County and Ningshan County in the south slope of Qinling Mountains,China.Based on the collected data,we developed a structural equation model to evaluate the coupling relationships among households′ protection attitudes,production behaviors,resource endowment,and family wealth.The results showed that:1) households with great resource endowment had more negative attitudes,probably due to their greater protection costs;2) the households with higher education levels had worse protection attitudes;3) the households with more family wealth were likely to use fewer fertilizers,pesticides,and firewood;4) the households with more resource endowment showed less production and management behaviors;5) the enhancement of households' attitudes improved production behaviors to protection the environment,but the effects were not statistically significant.Our results provide a basis for the government's protection policy making,exploring the effective management measures that are beneficial for both nature reserve management and community development.