Scanning electron microscope(SEM)metrology is critical in semiconductor manufacturing for patterning process quality assessment and monitoring.Besides feature width and feature-feature space dimension measurements fro...Scanning electron microscope(SEM)metrology is critical in semiconductor manufacturing for patterning process quality assessment and monitoring.Besides feature width and feature-feature space dimension measurements from critical dimension SEM(CDSEM)images,visual inspection of SEM image also offers rich information on the quality of patterning.However,visual inspection alone leaves considerable room of ambiguity regarding patterning quality.To narrow the room of ambiguity and to obtain more statistically quantitative information on patterning quality,SEM-image contours are often extracted to serve such purposes.From contours,important information such as critical dimension and resist sidewall angle at any location can be estimated.Those geometrical information can be used for optical proximity correction(OPC)model verification and lithography hotspot detection,etc.Classical contour extraction algorithms based on local information have insufficient capability in dealing with noisy and low contrast images.To achieve reliable contours from noisy and low contrast images,information beyond local should be made use of as much as possible.In this regard,deep convolutional neural network(DCNN)has proven its great capability,as manifested in various computer vision tasks.Taking the full advantages of this maturing technology,we have designed a DCNN network and applied it to the task of extracting contours from noisy and low contrast SEM images.It turns out that the model is capable of separating the resist top and bottom contours reliably.In addition,the model does not generate false contours,it also can suppress the generation of broken contours when ambiguous area for contour extraction is small and non-detrimental.With advanced image alignment algorithm with sub-pixel accuracy,contours from different exposure fields of same process condition can be superposed to estimate process variation band,furthermore,stochastic effect induced edge placement variation statistics can easily be inferred from the extracted contours.展开更多
Microstructure of the eco-material combining vegetation recovery with slope protection is important for determining plant-growing properties.Several techniques for analyzing the eco-material microstructure are present...Microstructure of the eco-material combining vegetation recovery with slope protection is important for determining plant-growing properties.Several techniques for analyzing the eco-material microstructure are presented,including the freeze-cut-drying method of preparing samples for scanning electronic microscopy (SEM),the SEM image processing technique and quantifying analysis method of the SEM images,and etc.The aggregates and pores in SEM images are identified using the different mathematics operators,and their effects are compared.The areas of aggregates and pores are obtained using the operator of morphology,and the influences of different thresholds in image segmentation are also discussed.The results show that the method,in which the variation of non-maximum grey-level gradient is limited,improves the effect of edge detections due to a weak distinction existing at the edge between the aggregates and pores in image.The determination of the threshold should combine the image characteristic with filling operation,so as to assure the precision of the image analysis,in which the contact-segmentation is the simplest and most effective method.The results also show that the pore areas in eco-materials are generally larger than those in the correlative soils,and their increment is large as soil fabric being fine.These differences are related to admixture of expansive perlitic.The operator of morphology provides a new method for the image analysis of other porous material microstructure such as soils and concretes.展开更多
In precision machining processes such as grinding,for example,analysis of machined surface is important one of most parameters to evaluate process performance.Equally important is to perform tribological analysis to u...In precision machining processes such as grinding,for example,analysis of machined surface is important one of most parameters to evaluate process performance.Equally important is to perform tribological analysis to understand chip formation and abrasive wheel wear,thus enabling manufacturing of components free of thermal damages.In grinding,due to high hardness of abrasive grains that remove material from workpiece in chip form and very low values of radial depth of cut,combination of low roughness values and tight dimensional tolerances is attained.Accordingly,the parameters involved in this process are determinant in surface quality that is primarily evaluated in terms of surface roughness and workpiece functionality.In this work,surface roughness(Rt parameter)and scanning electron microscope(SEM)images of ground surfaces of the AISI 420 martensitic stainless steel samples were evaluated.Tests were carried out in surface grinding with a white aluminum oxide wheel and an environmentally-friendly semisynthetic water-soluble coolant.Two values of radial depth of cut(10μm and 25μm)were tested.The results showed that the highest roughness values,deeper grooves on the machined surfaces as well as poorer surface quality were obtained after grinding under the severest cutting conditions.展开更多
A modelling study was performed to solve the heat and mass transfer problems between grain and the ambient air encountered during drying by microwave assisted hot-air dryer,under low microwave(MW)density of 0.2 W/g.Ca...A modelling study was performed to solve the heat and mass transfer problems between grain and the ambient air encountered during drying by microwave assisted hot-air dryer,under low microwave(MW)density of 0.2 W/g.Canola(Brassica napus),soybean(Glycine max)and corn(Zea mays)seeds were chosen due to their inherent high oil content.Scanning electron microscopy(SEM)was used to study the effect of drying conditions on the structural characteristics of these oilseeds.A mathematical model was adapted to simulate drying of one seed of canola,soybean and corn.The process of water transfer was modelled based on the effect of vapour pressure on the water molecules inside the seed.It was observed that when the difference between the vapour pressure inside the grain and the surrounding air was higher than,the drying rate increased which led to cracks in the grain.Results showed that the drying rate decreased when the temperature of air inside the cavity of the microwave increased for all the oilseeds studied,because of the reduced differential vapour pressure between the grain and the ambient air.On the other hand,the drying rate increased if the temperature of the inlet air was reduced because the difference between the two pressures increased.It was concluded that by controlling the ambient air,the grains could be protected against popping and cracking because of lower vapour pressure differential during MW assisted hot-air drying.展开更多
The effect of pore water chemistry on anisotropic behavior of consolidation and shear strength of reconstituted Ariake clay has been investigated experimentally.Two types of chemicals added into the pore water of the ...The effect of pore water chemistry on anisotropic behavior of consolidation and shear strength of reconstituted Ariake clay has been investigated experimentally.Two types of chemicals added into the pore water of the soil for enhancing flocculation microstructure of soil particles are sodium chloride(salt)(NaCl),and calcium chloride(CaCl_(2));and two dispersants added are sodium triphosphate(Na_(5)-P_(3)O_(10))and sodium hexametaphosphate(Na_(6)P_(6)O_(18)),respectively.The concentrations of these chemicals in pore water were 2-3%.Degrees of anisotropy of the coefficient of consolidation and undrained shear strength decreased with adding NaCl and CaCl_(2),but increased with adding the dispersants.Degree of anisotropy also increased with one-dimensional(1D)deformation and the samples with dispersive additives had higher increase rate.It has been confirmed qualitatively by scanning electron microscopy(SEM)images that adding dispersive chemicals promoted the formation of dispersive microstructure and increased the degree of anisotropy,and the chemicals enhancing flocculent microstructure had an inverse effect.The possible application of the findings to underground construction has been discussed also.展开更多
During the past two years the shale gas exploration in Southern Sichuan basin received some exciting achievements.Data of a new appraisal well showed that the gas producrtions of vertical well and horizontal well are^...During the past two years the shale gas exploration in Southern Sichuan basin received some exciting achievements.Data of a new appraisal well showed that the gas producrtions of vertical well and horizontal well are^1.5×104 m3/day/well(with maximum^3.5×104 m3/day/well)and^12.5×104 m3/day/well(with maximum^40×104 m3/day/well),respectively,indicating a good gas potential in this area.Eight core samples from the reservoir were investigated by using a carbon sulfur analyzer,microphotometry,x-ray diffractometry,field-emission scanning electron microscopy(FE-SEM),mercury injection porosimetry(MIP),and low-pressure nitrogen adsorption to obtain a better understanding of the reservoir characteristics of the Upper OrdovicianeLower Silurian organic-rich shale.Results show that the total organic carbon(TOC)content ranges from 0.5%to 5.9%,whereas the equivalent vitrinite reflectance(VRr)is between 2.8%and 3.0%.Pores in the studied samples were observed in three modes of occurrence,namely,interparticle pores,intraparticle pores,and intraparticle organic pores.The total porosity(P)ranges from 1.6%to 5.3%,and MIP data sets suggest that pores with throats larger than 20 nm contribute little to the pore volume.Low-pressure N2 adsorption isotherms indicate that the total specific surface area(SBET)ranges from 9.6 m2/g to 18.9 m2/g,and the pore volume(V)ranges from 0.011 cm3/g to 0.020 cm3/g.The plot of dV/dW versus W shows that the fine mesopores(pore size(BJH)<4 nm)mainly contribute to the pore volume.The P,SBET,and V show a good positive correlation with TOC and a weak positive correlation with the total clay mineral content,thus indicating that the nanopores are mainly generated by the decomposition of organic matter.The reservoir characteristics of the Upper OrdovicianeLower Silurian organic-rich shale are comparable with commercial shale gas plays in North America.The sample gas contents with TOC>2%are more than 3.0 m3/ton.The observation can be a good reference for the future exploration and evaluation of reservoir in this area.展开更多
According to the requirements for the beam collimation system of the rapid cycling synchrotron(RCS)of China Spallation Neutron Source(CSNS),the main structure of a scraper of primary collimator is made by W/Cu brazing...According to the requirements for the beam collimation system of the rapid cycling synchrotron(RCS)of China Spallation Neutron Source(CSNS),the main structure of a scraper of primary collimator is made by W/Cu brazing,in which the thickness of tungsten slice is 0.17 mm.In order to get the best mechanical properties,the brazing temperature is suggested to be controlled under the recrystallization temperature of tungsten,while the recrystallization temperature is affected directly by the thickness of tungsten.Because of little research and application on the brazing of thin tungsten slice of 0.17 mm and copper,tensile tests are done to get the mechanical properties of tungsten slices which experience different brazing temperatures.In keeping the inner relationships between the mechanical properties and temperature,another experiment is done by using SEM to scan the microstructures including the size and distribution of crystals.Finally we determine the recrystallization temperature of tungsten slice of 0.17 mm,and get the best parameters of W/Cu brazing for scrapers of primary collimator in CSNS/RCS.展开更多
文摘Scanning electron microscope(SEM)metrology is critical in semiconductor manufacturing for patterning process quality assessment and monitoring.Besides feature width and feature-feature space dimension measurements from critical dimension SEM(CDSEM)images,visual inspection of SEM image also offers rich information on the quality of patterning.However,visual inspection alone leaves considerable room of ambiguity regarding patterning quality.To narrow the room of ambiguity and to obtain more statistically quantitative information on patterning quality,SEM-image contours are often extracted to serve such purposes.From contours,important information such as critical dimension and resist sidewall angle at any location can be estimated.Those geometrical information can be used for optical proximity correction(OPC)model verification and lithography hotspot detection,etc.Classical contour extraction algorithms based on local information have insufficient capability in dealing with noisy and low contrast images.To achieve reliable contours from noisy and low contrast images,information beyond local should be made use of as much as possible.In this regard,deep convolutional neural network(DCNN)has proven its great capability,as manifested in various computer vision tasks.Taking the full advantages of this maturing technology,we have designed a DCNN network and applied it to the task of extracting contours from noisy and low contrast SEM images.It turns out that the model is capable of separating the resist top and bottom contours reliably.In addition,the model does not generate false contours,it also can suppress the generation of broken contours when ambiguous area for contour extraction is small and non-detrimental.With advanced image alignment algorithm with sub-pixel accuracy,contours from different exposure fields of same process condition can be superposed to estimate process variation band,furthermore,stochastic effect induced edge placement variation statistics can easily be inferred from the extracted contours.
文摘Microstructure of the eco-material combining vegetation recovery with slope protection is important for determining plant-growing properties.Several techniques for analyzing the eco-material microstructure are presented,including the freeze-cut-drying method of preparing samples for scanning electronic microscopy (SEM),the SEM image processing technique and quantifying analysis method of the SEM images,and etc.The aggregates and pores in SEM images are identified using the different mathematics operators,and their effects are compared.The areas of aggregates and pores are obtained using the operator of morphology,and the influences of different thresholds in image segmentation are also discussed.The results show that the method,in which the variation of non-maximum grey-level gradient is limited,improves the effect of edge detections due to a weak distinction existing at the edge between the aggregates and pores in image.The determination of the threshold should combine the image characteristic with filling operation,so as to assure the precision of the image analysis,in which the contact-segmentation is the simplest and most effective method.The results also show that the pore areas in eco-materials are generally larger than those in the correlative soils,and their increment is large as soil fabric being fine.These differences are related to admixture of expansive perlitic.The operator of morphology provides a new method for the image analysis of other porous material microstructure such as soils and concretes.
文摘In precision machining processes such as grinding,for example,analysis of machined surface is important one of most parameters to evaluate process performance.Equally important is to perform tribological analysis to understand chip formation and abrasive wheel wear,thus enabling manufacturing of components free of thermal damages.In grinding,due to high hardness of abrasive grains that remove material from workpiece in chip form and very low values of radial depth of cut,combination of low roughness values and tight dimensional tolerances is attained.Accordingly,the parameters involved in this process are determinant in surface quality that is primarily evaluated in terms of surface roughness and workpiece functionality.In this work,surface roughness(Rt parameter)and scanning electron microscope(SEM)images of ground surfaces of the AISI 420 martensitic stainless steel samples were evaluated.Tests were carried out in surface grinding with a white aluminum oxide wheel and an environmentally-friendly semisynthetic water-soluble coolant.Two values of radial depth of cut(10μm and 25μm)were tested.The results showed that the highest roughness values,deeper grooves on the machined surfaces as well as poorer surface quality were obtained after grinding under the severest cutting conditions.
基金the University of Djillali Bounaama Khemis Miliana,Algeria for this study,cnepru(A16N01UN440120150002)Punit Kohli and Nathalie Becerra acknowledge NSF(CHE-0748676 and CHE-0959568),NIH(GM 106364 and GM 080711)Office of Sponsored Project Administration(OSPA)at SIUC for partial funding.Arosha Umagiliyage,doctoral student of Plant,Soil and Agricultural Systems,SIU provided help on freeze drying of oilseed samples.
文摘A modelling study was performed to solve the heat and mass transfer problems between grain and the ambient air encountered during drying by microwave assisted hot-air dryer,under low microwave(MW)density of 0.2 W/g.Canola(Brassica napus),soybean(Glycine max)and corn(Zea mays)seeds were chosen due to their inherent high oil content.Scanning electron microscopy(SEM)was used to study the effect of drying conditions on the structural characteristics of these oilseeds.A mathematical model was adapted to simulate drying of one seed of canola,soybean and corn.The process of water transfer was modelled based on the effect of vapour pressure on the water molecules inside the seed.It was observed that when the difference between the vapour pressure inside the grain and the surrounding air was higher than,the drying rate increased which led to cracks in the grain.Results showed that the drying rate decreased when the temperature of air inside the cavity of the microwave increased for all the oilseeds studied,because of the reduced differential vapour pressure between the grain and the ambient air.On the other hand,the drying rate increased if the temperature of the inlet air was reduced because the difference between the two pressures increased.It was concluded that by controlling the ambient air,the grains could be protected against popping and cracking because of lower vapour pressure differential during MW assisted hot-air drying.
基金Mr.A.Saito,technician at the Graduate School of Science and Engineering,Saga University,Japan and Mr.T.Shimizu,graduate of the Faculty of Science and Engineering,Saga University conducted the direct shear tests reported in this study.This work has been supported by the National Natural Science Foundation of China(NSFC)with a grant No.51578333the Grants-in-Aid for Scientific Research(KAKENHI)of the Japanese Society for the Promotion of Science(JSPS)with a grant number of 15K06212.
文摘The effect of pore water chemistry on anisotropic behavior of consolidation and shear strength of reconstituted Ariake clay has been investigated experimentally.Two types of chemicals added into the pore water of the soil for enhancing flocculation microstructure of soil particles are sodium chloride(salt)(NaCl),and calcium chloride(CaCl_(2));and two dispersants added are sodium triphosphate(Na_(5)-P_(3)O_(10))and sodium hexametaphosphate(Na_(6)P_(6)O_(18)),respectively.The concentrations of these chemicals in pore water were 2-3%.Degrees of anisotropy of the coefficient of consolidation and undrained shear strength decreased with adding NaCl and CaCl_(2),but increased with adding the dispersants.Degree of anisotropy also increased with one-dimensional(1D)deformation and the samples with dispersive additives had higher increase rate.It has been confirmed qualitatively by scanning electron microscopy(SEM)images that adding dispersive chemicals promoted the formation of dispersive microstructure and increased the degree of anisotropy,and the chemicals enhancing flocculent microstructure had an inverse effect.The possible application of the findings to underground construction has been discussed also.
基金The authors are grateful to Lei Xie,Xiaowei Yang,Bing Shu and Yanni Ma,for their help in sampling and field work.This study was supported by the National Natural Science Foundation of China(Grant No.41302123)the Doctoral Program of Higher Education(Specialized Research Fund)of China(Grant No.20125121130001)the Science Foundation of Education Department of Sichuan Province(Grant No.13ZB0190).
文摘During the past two years the shale gas exploration in Southern Sichuan basin received some exciting achievements.Data of a new appraisal well showed that the gas producrtions of vertical well and horizontal well are^1.5×104 m3/day/well(with maximum^3.5×104 m3/day/well)and^12.5×104 m3/day/well(with maximum^40×104 m3/day/well),respectively,indicating a good gas potential in this area.Eight core samples from the reservoir were investigated by using a carbon sulfur analyzer,microphotometry,x-ray diffractometry,field-emission scanning electron microscopy(FE-SEM),mercury injection porosimetry(MIP),and low-pressure nitrogen adsorption to obtain a better understanding of the reservoir characteristics of the Upper OrdovicianeLower Silurian organic-rich shale.Results show that the total organic carbon(TOC)content ranges from 0.5%to 5.9%,whereas the equivalent vitrinite reflectance(VRr)is between 2.8%and 3.0%.Pores in the studied samples were observed in three modes of occurrence,namely,interparticle pores,intraparticle pores,and intraparticle organic pores.The total porosity(P)ranges from 1.6%to 5.3%,and MIP data sets suggest that pores with throats larger than 20 nm contribute little to the pore volume.Low-pressure N2 adsorption isotherms indicate that the total specific surface area(SBET)ranges from 9.6 m2/g to 18.9 m2/g,and the pore volume(V)ranges from 0.011 cm3/g to 0.020 cm3/g.The plot of dV/dW versus W shows that the fine mesopores(pore size(BJH)<4 nm)mainly contribute to the pore volume.The P,SBET,and V show a good positive correlation with TOC and a weak positive correlation with the total clay mineral content,thus indicating that the nanopores are mainly generated by the decomposition of organic matter.The reservoir characteristics of the Upper OrdovicianeLower Silurian organic-rich shale are comparable with commercial shale gas plays in North America.The sample gas contents with TOC>2%are more than 3.0 m3/ton.The observation can be a good reference for the future exploration and evaluation of reservoir in this area.
基金supported by China Spallation Neutron Source(CSNS)
文摘According to the requirements for the beam collimation system of the rapid cycling synchrotron(RCS)of China Spallation Neutron Source(CSNS),the main structure of a scraper of primary collimator is made by W/Cu brazing,in which the thickness of tungsten slice is 0.17 mm.In order to get the best mechanical properties,the brazing temperature is suggested to be controlled under the recrystallization temperature of tungsten,while the recrystallization temperature is affected directly by the thickness of tungsten.Because of little research and application on the brazing of thin tungsten slice of 0.17 mm and copper,tensile tests are done to get the mechanical properties of tungsten slices which experience different brazing temperatures.In keeping the inner relationships between the mechanical properties and temperature,another experiment is done by using SEM to scan the microstructures including the size and distribution of crystals.Finally we determine the recrystallization temperature of tungsten slice of 0.17 mm,and get the best parameters of W/Cu brazing for scrapers of primary collimator in CSNS/RCS.