The development of the medicinal trade and markets in late imperial China increased anxiety among scholarly physicians about the authenticity of medicines.Even though the market was typically depicted by scholarly phy...The development of the medicinal trade and markets in late imperial China increased anxiety among scholarly physicians about the authenticity of medicines.Even though the market was typically depicted by scholarly physicians as a place full of tricks and deceptions,it was a repertoire where practical knowledge about authentication was created and circulated.The specialized knowledge was mainly transmitted through oral tradition.But in some instances,it was also written down by scholarly physicians or merchants,allowing us to reconstruct the techniques and their underlying rationales.Authentication of medicines mobilized multiple sensory perceptions of the human body,consisting of observing,tasting,smelling,touching,and performing small tests.All these techniques played different roles in the practice of authentication.Even though these sensory techniques seemed like a collection of trivial and practical records without any coherent rationales,an underlying episteme could be detected through a close investigation.Merchants and practitioners in the market did not understand the nature and materiality of medicines by any established theories.Instead,they actively engaged with the tangible form of medicines through the senses and bodily techniques.This sensory form of knowing indicates a type of practical expertise that is distant from the scholarly tradition of materia medica in late imperial China.展开更多
Food quality is of primary concern in the food industry and to the consumer. Systems that mimic human senses have been developed and applied to the characterization of food quality. The five primary senses are: visio...Food quality is of primary concern in the food industry and to the consumer. Systems that mimic human senses have been developed and applied to the characterization of food quality. The five primary senses are: vision, hearing, smell, taste and touch. In the characterization of food quality, people assess the samples sensorially and differentiate “good”from “bad”on a continuum. However, the human sensory system is subjective, with mental and physical inconsistencies, and needs time to work. Artificial senses such as machine vision, the electronic ear, electronic nose, electronic tongue, artificial mouth and even artificial the head have been developed that mimic the human senses. These artificial senses are coordinated individually or collectively by a pat- tern recognition technique, typically artificial neural networks, which have been developed based on studies of the mechanism of the human brain. Such a structure has been used to formulate methods for rapid characterization of food quality. This research presents and discusses individual artificial sensing systems. With the concept of multi-sensor data fusion these sensor systems can work collectively in some way. Two such fused systems, artificial mouth and artificial head, are described and discussed. It indicates that each of the individual systems has their own artificially sensing ability to differentiate food samples. It further indicates that with a more complete mimic of human intelligence the fused systems are more powerful than the individual sys- tems in differentiation of food samples.展开更多
The narrow sense and applicable limit of Practical Salinity Scale 1978 (PSS78) and volumetric titration using silver nitrate to measure the salinity of non conservative oceanwater are discussed.The salinity obtained ...The narrow sense and applicable limit of Practical Salinity Scale 1978 (PSS78) and volumetric titration using silver nitrate to measure the salinity of non conservative oceanwater are discussed.The salinity obtained by electrical conductivity method and chlorinity salinity method obviously deviates from the absolute salinity( S A). The Density Salinity Scale(DSS98)proposed by the writers can be extensively used in conservative and non conservative water samples. The merits of the density salinity scale are as follows. (1)The Density Salinity Scale is only related to seawater mass and its buoyant effect, and is not influenced by the variation in seawater composition, and therefore,has high reliability,and repeatability for salinity determination. (2)The salinity values measured by the DSS98 have a conservative property.For oceanwater samples the salinity values are the same as those determined by the PSS78; for non conservative water samples(e g. samples from industrial sources),the salinity values are close to the absolute salinity values in comparison with those measured by the PSS78 and the Knudsen method. (3)For a solution with given solute mass,the solution concentration can be converted into the corresponding salinity by the Density Salinity Scale using the expansion coefficient of the solution and the calibration coefficient of the partial molar volume of the solute.展开更多
The today culture seems to be tom by two contradicted phenomena. First is connected with crisis of humanities, second with stepping of arts into the new spheres. Based on the thought of Marshall McLuhan, Giambatistta ...The today culture seems to be tom by two contradicted phenomena. First is connected with crisis of humanities, second with stepping of arts into the new spheres. Based on the thought of Marshall McLuhan, Giambatistta Vico and Rudolf Arnheim we will display that this contradiction is only apparent. After Marshall McLuhan we acknowledge the power of media to change the pattems of cognition and after RudolfArnheim we acknowledge the intimate relation between senses and mind. On such foundation we will see that crisis of humanities is connected with incorrect understanding relation between mind and senses. As Rudolf Arnheim remarks strict division between senses and mind favors downgrading social role of art and humanities--such division refuses art and humanities right to take a part in cognition. But in the age of electronic/digital culture, which is recovering the simultaneous of the verbi-voco-visual communication, new proportion between our senses is appearing. It must entail new approach to art and humanities.展开更多
This paper is to analyze the novel in the following aspects: The Chinese-American cultural conflicts, the mother and daughter relations and sisters’ relations, the psychological critics, and the postcolonial identit...This paper is to analyze the novel in the following aspects: The Chinese-American cultural conflicts, the mother and daughter relations and sisters’ relations, the psychological critics, and the postcolonial identity. The novel is about multiple explanations of the aspects mentioned above. The writer confuses the Chinese culture, the relationship of the two sisters. Under the superficial description, the writer shows the psychological status of the main character and the practically existence of postcolonial identity and embodiment in the novel.展开更多
In this paper, we carry out QoE (Quality of Experience) assessment to investigate influences of olfactory and auditory senses on fairness for a networked virtual 3D object identification game with haptics. In the game...In this paper, we carry out QoE (Quality of Experience) assessment to investigate influences of olfactory and auditory senses on fairness for a networked virtual 3D object identification game with haptics. In the game, two players try to identify objects which are placed in a shared 3D virtual space. In the assessment, we carry out the game in four cases. Smells and sounds are presented in the first case, only sounds are done in the second case, and only smells are done in the third case. In the last case, we present neither smell nor sound. As a result, we demonstrate that the fairness deteriorates more largely as the difference in conditions between two users becomes larger.展开更多
In this paper, we carry out QoE (Quality of Experience) assessment of fairness between players in a networked balloon bursting game with olfactory and haptic senses. We also make a comparison of the fairness among dif...In this paper, we carry out QoE (Quality of Experience) assessment of fairness between players in a networked balloon bursting game with olfactory and haptic senses. We also make a comparison of the fairness among different types of networked games with olfactory and haptic senses in the assessment. Then, we clarify the differences owing to usage of olfactory and haptic senses among the games. As a result, we illustrate that the fairness is largely affected by the delay difference, and we also demonstrate that the allowable range depends on the type of games, type of senses which are employed in the games, and the play methods.展开更多
Educators and teachers generally agree that a major variable affecting students learning L2 or FL is motivation. This paper discusses the correlation between increasing the sense of achievement and sustaining students...Educators and teachers generally agree that a major variable affecting students learning L2 or FL is motivation. This paper discusses the correlation between increasing the sense of achievement and sustaining students' motivations in a Chinese cultural setting, in which language learning should not be understood in terms of North American and Western cultural values. Considering EFL or ElL situations at a tertiary education level in China's Mainland, the author thinks that for university students, we should consider this issue in another way and concludes that, from the adults' psychological perspective, the sense of achievement, more than any other factor, plays the most important role in sustaining students' motivations, thus contributing greatly to the whole process of learning. Therefore, it should be viewed as a very useful and effective method to maintain students' motivations. Based on this idea, the author strongly suggests that while they are capitalizing on some effective methods or strategies to foster and maintain their students' motivations, EFL or ElL teachers should try every means and utilize any occasion to ensure that students can feel their achievement and see progress during the advanced level of learning, thus guaranteeing they will keep expending energy and effort in continued learning.展开更多
Emulating the auditory sense is a significant challenge in terms of both integration and energy consumption for handling complicated spatiotemporal information.Here,we demonstrate how to utilize the chaotic dynamics o...Emulating the auditory sense is a significant challenge in terms of both integration and energy consumption for handling complicated spatiotemporal information.Here,we demonstrate how to utilize the chaotic dynamics of a threshold switching memristor,which usually acts as a leaky integrate and fire neuron in the neuromorphic network,to encode the frequency and amplitude in auditory information.We fabricate a Pd/Nb/NbOx/Nb/Pd memristor domi-nated by the Poole-Frankel conduction mechanism,set its state at the edge of chaos,and stimulate it using periodic perturbations.The memristor's responses to the perturbation frequencies can be categorized into three zones.Two are phase locking with linear phase-frequency rela tionships,and one has a hyper-bolic spike number-frequency relationship.The memristor system also enables intensity coding and tonotopy by modulating the response spikes in either the locked phase or spike number.Based on the emulation of these two features,the memristor system demonstrates sound location and frequency mixing.Our study suggests a novel routine for handling the auditory and visual senses using threshold-switching memristor arrays to enhance the efficiency of neuromorphic networks.展开更多
A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu...A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.展开更多
Resonantly enhanced dielectric sensing has superior sensitivity and accuracy because the signal is measured from relative resonance shifts that are immune to signal fluctuations.For applications in the Internet of Thi...Resonantly enhanced dielectric sensing has superior sensitivity and accuracy because the signal is measured from relative resonance shifts that are immune to signal fluctuations.For applications in the Internet of Things(IoT),accurate detection of resonance frequency shifts using a compact circuit is in high demand.We proposed an ultracompact integrated sensing system that merges a spoof surface plasmon resonance sensor with signal detection,processing,and wireless communication.A softwaredefined scheme was developed to track the resonance shift,which minimized the hardware circuit and made the detection adaptive to the target resonance.A microwave spoof surface plasmon resonator was designed to enhance sensitivity and resonance intensity.The integrated sensing system was constructed on a printed circuit board with dimensions of 1.8 cm×1.2 cm and connected to a smartphone wirelessly through Bluetooth,working in both frequency scanning mode and resonance tracking mode and achieving a signal-to-noise ratio of 69 dB in acetone vapor sensing.This study provides an ultracompact,accurate,adaptive,sensitive,and wireless solution for resonant sensors in the IoT.展开更多
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method...In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.展开更多
Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene base...Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene based flexible NIR photodetector array via a facile photolithography technology.The single ZnSb/Ti_(3)C_(2)T_(x)photodetector exhibited a high light-to-dark current ratio of 4.98,fast response/recovery time(2.5/1.3 s)and excellent stability due to the tight connection between 2D ZnSb nanoplates and 2D Ti_(3)C_(2)T_(x)MXene nanoflakes,and the formed 2D van der Waals heterojunction.Thin polyethylene terephthalate(PET)substrate enables the ZnSb/Ti_(3)C_(2)T_(x)photodetector withstand bending such that stable photoelectrical properties with non-obvious change were maintained over 5000 bending cycles.Moreover,the ZnSb/Ti_(3)C_(2)T_(x)photodetectors were integrated into a 26×5 device array,realizing a NIR image sensing application.展开更多
Flexible thermoelectric materials play an important role in smart wearables,such as wearable power generation,self-powered sensing,and personal thermal management.However,with the rapid development of Internet of Thin...Flexible thermoelectric materials play an important role in smart wearables,such as wearable power generation,self-powered sensing,and personal thermal management.However,with the rapid development of Internet of Things(IoT)and artificial intelligence(AI),higher standards for comfort,multifunctionality,and sustainable operation of wearable electronics have been proposed,and it remains challenging to meet all the requirements of currently reported thermoelectric devices.Herein,we present a multifunctional,wearable,and wireless sensing system based on a thermoelectric knitted fabric with over 600 mm·s^(-1)air permeability and a stretchability of 120%.The device coupled with a wireless transmission system realizes self-powered monitoring of human respiration through an mobile phone application(APP).Furthermore,an integrated thermoelectric system was designed to combine photothermal conversion and passive radiative cooling,enabling the characteristics of being powered by solar-driven in-plane temperature differences and monitoring outdoor sunlight intensity through the APP.Additionally,we decoupled the complex signals of resistance and thermal voltage during deformation under solar irradiation based on the anisotropy of the knitted fabrics to enable the device to monitor and optimize the outdoor physical activity of the athlete via the APP.This novel thermoelectric fabricbased wearable and wireless sensing platform has promising applications in next-generation smart textiles.展开更多
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between sing...Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.展开更多
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa...When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.展开更多
The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of t...The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope.展开更多
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerati...Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.展开更多
基金funded by the project“宋元以来中医知识的演变与现代中医的形成”(The Evolution of TCM Knowledge Since the Song and Yuan Dynasties and the Formation of Modern Chinese Medicine)supported by the National Social Science Fund of China)(No.18ZDA75)。
文摘The development of the medicinal trade and markets in late imperial China increased anxiety among scholarly physicians about the authenticity of medicines.Even though the market was typically depicted by scholarly physicians as a place full of tricks and deceptions,it was a repertoire where practical knowledge about authentication was created and circulated.The specialized knowledge was mainly transmitted through oral tradition.But in some instances,it was also written down by scholarly physicians or merchants,allowing us to reconstruct the techniques and their underlying rationales.Authentication of medicines mobilized multiple sensory perceptions of the human body,consisting of observing,tasting,smelling,touching,and performing small tests.All these techniques played different roles in the practice of authentication.Even though these sensory techniques seemed like a collection of trivial and practical records without any coherent rationales,an underlying episteme could be detected through a close investigation.Merchants and practitioners in the market did not understand the nature and materiality of medicines by any established theories.Instead,they actively engaged with the tangible form of medicines through the senses and bodily techniques.This sensory form of knowing indicates a type of practical expertise that is distant from the scholarly tradition of materia medica in late imperial China.
文摘Food quality is of primary concern in the food industry and to the consumer. Systems that mimic human senses have been developed and applied to the characterization of food quality. The five primary senses are: vision, hearing, smell, taste and touch. In the characterization of food quality, people assess the samples sensorially and differentiate “good”from “bad”on a continuum. However, the human sensory system is subjective, with mental and physical inconsistencies, and needs time to work. Artificial senses such as machine vision, the electronic ear, electronic nose, electronic tongue, artificial mouth and even artificial the head have been developed that mimic the human senses. These artificial senses are coordinated individually or collectively by a pat- tern recognition technique, typically artificial neural networks, which have been developed based on studies of the mechanism of the human brain. Such a structure has been used to formulate methods for rapid characterization of food quality. This research presents and discusses individual artificial sensing systems. With the concept of multi-sensor data fusion these sensor systems can work collectively in some way. Two such fused systems, artificial mouth and artificial head, are described and discussed. It indicates that each of the individual systems has their own artificially sensing ability to differentiate food samples. It further indicates that with a more complete mimic of human intelligence the fused systems are more powerful than the individual sys- tems in differentiation of food samples.
文摘The narrow sense and applicable limit of Practical Salinity Scale 1978 (PSS78) and volumetric titration using silver nitrate to measure the salinity of non conservative oceanwater are discussed.The salinity obtained by electrical conductivity method and chlorinity salinity method obviously deviates from the absolute salinity( S A). The Density Salinity Scale(DSS98)proposed by the writers can be extensively used in conservative and non conservative water samples. The merits of the density salinity scale are as follows. (1)The Density Salinity Scale is only related to seawater mass and its buoyant effect, and is not influenced by the variation in seawater composition, and therefore,has high reliability,and repeatability for salinity determination. (2)The salinity values measured by the DSS98 have a conservative property.For oceanwater samples the salinity values are the same as those determined by the PSS78; for non conservative water samples(e g. samples from industrial sources),the salinity values are close to the absolute salinity values in comparison with those measured by the PSS78 and the Knudsen method. (3)For a solution with given solute mass,the solution concentration can be converted into the corresponding salinity by the Density Salinity Scale using the expansion coefficient of the solution and the calibration coefficient of the partial molar volume of the solute.
文摘The today culture seems to be tom by two contradicted phenomena. First is connected with crisis of humanities, second with stepping of arts into the new spheres. Based on the thought of Marshall McLuhan, Giambatistta Vico and Rudolf Arnheim we will display that this contradiction is only apparent. After Marshall McLuhan we acknowledge the power of media to change the pattems of cognition and after RudolfArnheim we acknowledge the intimate relation between senses and mind. On such foundation we will see that crisis of humanities is connected with incorrect understanding relation between mind and senses. As Rudolf Arnheim remarks strict division between senses and mind favors downgrading social role of art and humanities--such division refuses art and humanities right to take a part in cognition. But in the age of electronic/digital culture, which is recovering the simultaneous of the verbi-voco-visual communication, new proportion between our senses is appearing. It must entail new approach to art and humanities.
文摘This paper is to analyze the novel in the following aspects: The Chinese-American cultural conflicts, the mother and daughter relations and sisters’ relations, the psychological critics, and the postcolonial identity. The novel is about multiple explanations of the aspects mentioned above. The writer confuses the Chinese culture, the relationship of the two sisters. Under the superficial description, the writer shows the psychological status of the main character and the practically existence of postcolonial identity and embodiment in the novel.
文摘In this paper, we carry out QoE (Quality of Experience) assessment to investigate influences of olfactory and auditory senses on fairness for a networked virtual 3D object identification game with haptics. In the game, two players try to identify objects which are placed in a shared 3D virtual space. In the assessment, we carry out the game in four cases. Smells and sounds are presented in the first case, only sounds are done in the second case, and only smells are done in the third case. In the last case, we present neither smell nor sound. As a result, we demonstrate that the fairness deteriorates more largely as the difference in conditions between two users becomes larger.
文摘In this paper, we carry out QoE (Quality of Experience) assessment of fairness between players in a networked balloon bursting game with olfactory and haptic senses. We also make a comparison of the fairness among different types of networked games with olfactory and haptic senses in the assessment. Then, we clarify the differences owing to usage of olfactory and haptic senses among the games. As a result, we illustrate that the fairness is largely affected by the delay difference, and we also demonstrate that the allowable range depends on the type of games, type of senses which are employed in the games, and the play methods.
文摘Educators and teachers generally agree that a major variable affecting students learning L2 or FL is motivation. This paper discusses the correlation between increasing the sense of achievement and sustaining students' motivations in a Chinese cultural setting, in which language learning should not be understood in terms of North American and Western cultural values. Considering EFL or ElL situations at a tertiary education level in China's Mainland, the author thinks that for university students, we should consider this issue in another way and concludes that, from the adults' psychological perspective, the sense of achievement, more than any other factor, plays the most important role in sustaining students' motivations, thus contributing greatly to the whole process of learning. Therefore, it should be viewed as a very useful and effective method to maintain students' motivations. Based on this idea, the author strongly suggests that while they are capitalizing on some effective methods or strategies to foster and maintain their students' motivations, EFL or ElL teachers should try every means and utilize any occasion to ensure that students can feel their achievement and see progress during the advanced level of learning, thus guaranteeing they will keep expending energy and effort in continued learning.
基金National Natural Science Foundation of China,Grant/Award Number:51972192。
文摘Emulating the auditory sense is a significant challenge in terms of both integration and energy consumption for handling complicated spatiotemporal information.Here,we demonstrate how to utilize the chaotic dynamics of a threshold switching memristor,which usually acts as a leaky integrate and fire neuron in the neuromorphic network,to encode the frequency and amplitude in auditory information.We fabricate a Pd/Nb/NbOx/Nb/Pd memristor domi-nated by the Poole-Frankel conduction mechanism,set its state at the edge of chaos,and stimulate it using periodic perturbations.The memristor's responses to the perturbation frequencies can be categorized into three zones.Two are phase locking with linear phase-frequency rela tionships,and one has a hyper-bolic spike number-frequency relationship.The memristor system also enables intensity coding and tonotopy by modulating the response spikes in either the locked phase or spike number.Based on the emulation of these two features,the memristor system demonstrates sound location and frequency mixing.Our study suggests a novel routine for handling the auditory and visual senses using threshold-switching memristor arrays to enhance the efficiency of neuromorphic networks.
基金National Natural Science Foundation of China(Grant Nos.62335006,62022032,62275065,and 61875047)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University),Ministry of Education(Grant No.OEIAM202202)Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023011).
文摘A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.
基金supported by the National Natural Science Foundation of China(62288101,61701108,and 61631007)the National Key Research and Development Program of China(2017YFA0700201,2017YFA0700202,and 2017YFA0700203)+1 种基金the Major Project of Natural Science Foundation of Jiangsu Province(BK20212002)the 111 Project(111-2-05).
文摘Resonantly enhanced dielectric sensing has superior sensitivity and accuracy because the signal is measured from relative resonance shifts that are immune to signal fluctuations.For applications in the Internet of Things(IoT),accurate detection of resonance frequency shifts using a compact circuit is in high demand.We proposed an ultracompact integrated sensing system that merges a spoof surface plasmon resonance sensor with signal detection,processing,and wireless communication.A softwaredefined scheme was developed to track the resonance shift,which minimized the hardware circuit and made the detection adaptive to the target resonance.A microwave spoof surface plasmon resonator was designed to enhance sensitivity and resonance intensity.The integrated sensing system was constructed on a printed circuit board with dimensions of 1.8 cm×1.2 cm and connected to a smartphone wirelessly through Bluetooth,working in both frequency scanning mode and resonance tracking mode and achieving a signal-to-noise ratio of 69 dB in acetone vapor sensing.This study provides an ultracompact,accurate,adaptive,sensitive,and wireless solution for resonant sensors in the IoT.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)(No. 2021R1I1A1A0105621313, No. 2022R1F1A1074441, No. 2022K1A3A1A20014496, and No. 2022R1F1A1074083)supported by the Ministry of Education Funding (No. RIS 2021-004)supported by the Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS-2023-00284318).
文摘In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.
基金supported by National Natural Science Foundation of China(51672308,51972025,61888102,and 62004187).
文摘Two-dimension(2D)van der Waals heterojunction holds essential promise in achieving high-performance flexible near-infrared(NIR)photodetector.Here,we report the successful fabrication of ZnSb/Ti_(3)C_(2)T_(x)MXene based flexible NIR photodetector array via a facile photolithography technology.The single ZnSb/Ti_(3)C_(2)T_(x)photodetector exhibited a high light-to-dark current ratio of 4.98,fast response/recovery time(2.5/1.3 s)and excellent stability due to the tight connection between 2D ZnSb nanoplates and 2D Ti_(3)C_(2)T_(x)MXene nanoflakes,and the formed 2D van der Waals heterojunction.Thin polyethylene terephthalate(PET)substrate enables the ZnSb/Ti_(3)C_(2)T_(x)photodetector withstand bending such that stable photoelectrical properties with non-obvious change were maintained over 5000 bending cycles.Moreover,the ZnSb/Ti_(3)C_(2)T_(x)photodetectors were integrated into a 26×5 device array,realizing a NIR image sensing application.
基金supported by the National Natural Science Foundation of China(51973027 and 52003044)the Fundamental Research Funds for the Central Universities(2232020A-08)+4 种基金International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(21130750100)the Major Scientific and Technological Innovation Projects of Shandong Province(2021CXGC011004)supported by the Chang Jiang Scholars Program and the Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-03-E00023)to Prof.Xiaohong Qinthe State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(KF2216)and Donghua University(DHU)Distinguished Young Professor Program to Prof.Liming Wangthe Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(CUSF-DH-D-2022040)to Xinyang He.
文摘Flexible thermoelectric materials play an important role in smart wearables,such as wearable power generation,self-powered sensing,and personal thermal management.However,with the rapid development of Internet of Things(IoT)and artificial intelligence(AI),higher standards for comfort,multifunctionality,and sustainable operation of wearable electronics have been proposed,and it remains challenging to meet all the requirements of currently reported thermoelectric devices.Herein,we present a multifunctional,wearable,and wireless sensing system based on a thermoelectric knitted fabric with over 600 mm·s^(-1)air permeability and a stretchability of 120%.The device coupled with a wireless transmission system realizes self-powered monitoring of human respiration through an mobile phone application(APP).Furthermore,an integrated thermoelectric system was designed to combine photothermal conversion and passive radiative cooling,enabling the characteristics of being powered by solar-driven in-plane temperature differences and monitoring outdoor sunlight intensity through the APP.Additionally,we decoupled the complex signals of resistance and thermal voltage during deformation under solar irradiation based on the anisotropy of the knitted fabrics to enable the device to monitor and optimize the outdoor physical activity of the athlete via the APP.This novel thermoelectric fabricbased wearable and wireless sensing platform has promising applications in next-generation smart textiles.
基金This work was supported by the National Natural Science Foundation of China(62271299)Shanghai Sailing Program(22YF1413400).Shanghai Engineering Research Center for We thank the Integrated Circuits and Advanced Display Materials.
文摘Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51109158,U2106223)the Science and Technology Development Plan Program of Tianjin Municipal Transportation Commission(Grant No.2022-48)。
文摘When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.
基金financially supported by the National Natural Science Foundation of China[grant number 42230610]the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0103]+1 种基金the Natural Science Foundation of Sichuan Province[grant number 2022NSFSC0217]the Scientific Research Project of Chengdu University of Information Technology[grant number KYTZ201721].
文摘The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope.
基金supported by the National Natural Science Foundation of China,No.82171336(to XX)。
文摘Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.