An improved Monte Carlo method was used to simulate the motion of electrons in c-C4F8 and SF6 gas mixtures for pulsed townsend discharge. The electron swarm parameters such as effective ionization coefficient, -↑α a...An improved Monte Carlo method was used to simulate the motion of electrons in c-C4F8 and SF6 gas mixtures for pulsed townsend discharge. The electron swarm parameters such as effective ionization coefficient, -↑α and drift velocity over the E/N range from 280~700 Td(1Td=10^-21 V·m^2) were calculated by employing a set of cross sections available in literature. From the variation cure of -↑α with SF6 partial pressure p, the limiting field (E/N)lim of gas mixture at different gas content was determined. It is found that the limiting field of c-C4F8 and SF6 gas mixture is higher than that of pure SF6 at any SF6 mixture ratio. Simulation results show excellent agreement with experiment data available in previous literature.展开更多
HFO-1234 ze(E)(trans-1,3,3,3-tetrafluoropropene,chemical formula:C3H2F4)is an extremely environmentally friendly SF6 alternative gas with high electrical strength.In this paper,the partial discharge(PD)characteristics...HFO-1234 ze(E)(trans-1,3,3,3-tetrafluoropropene,chemical formula:C3H2F4)is an extremely environmentally friendly SF6 alternative gas with high electrical strength.In this paper,the partial discharge(PD)characteristics of HFO-1234 ze(E)/N2 mixtures were studied using the gas insulation test platform.The PD inception voltage of insulating gas under positive and negative half cycles of power frequency was tested.Using SF6/N2 mixtures as a control group,the effects of electrode spacing,mixing ratio and pressure on the insulation performance of HFO-1234 ze(E)/N2 mixtures were explored.The test results show that the PD inception voltage of the negative half-cycle of pure HFO-1234 ze(E)under short electrode spacing can reach 0.96-1.04 times of pure SF6 under different pressures;the PD inception voltage of40%HFO-1234 ze(E)/60%N2 mixtures at 0.3 MPa is 0.67-0.89 times that of SF6/N2 mixtures under the same conditions,which has great application prospect.展开更多
This paper describes a realizable fabrication method to manufacture chemical gas sensors by using singlewalled carbon nanotubes(SWCNTs).The sensors were tested for the monitoring of SF_6 decomposition gas produced by ...This paper describes a realizable fabrication method to manufacture chemical gas sensors by using singlewalled carbon nanotubes(SWCNTs).The sensors were tested for the monitoring of SF_6 decomposition gas produced by partial discharge(PD) in GIS tank.The results showed a superior sensitivity,favorable reliability and good reproducibility. For further clarifying the relativity between sensor response and partial discharge activity,the discharge in GIS tank was monitored simultaneously through conventional pulse current method and a SWCNTs gas sensor,and the measurement results were put together for comparative analysis in this paper.The sensor response showed a great dependence on partial discharge characteristics.The sensor response increased nearly linearly with limits when the energy of discharge was persistently accumulated.Partial discharge power had a great influence on the response rate and the time delay.With the increase of partial discharge power,the response rate augmented almost in proportion while the time delay gradually becomes shorter with limits.The results were quite favorable to assess the partial discharge intensity and duration to some extent.Compared with pulse current method,the sensor was predominant to detect partial discharge exposed to constantly high levels of noise.It was capable of detecting partial discharge which was too weak to be detected with pulse current method.However,the sensor response didn't show much dependency on the apparent discharge of partial discharge.展开更多
Structural design and tests on the characteristics of the SF6 gas switch with a small gap are presented. This kind of switch often works under high pressure and nanosecond pulse for getting pulse with faster risetime....Structural design and tests on the characteristics of the SF6 gas switch with a small gap are presented. This kind of switch often works under high pressure and nanosecond pulse for getting pulse with faster risetime. The breakdown voltage and breakdown delay of a number of switches with different geometries, gas pressures and pulse waveforms were investigated. Experimental results suggested that the breakdown voltage increases linearly with the gas pressure, and the breakdown delay decreases with an increase in the gas pressure and a reduction in the gap distance of the switch under the same applied pulse. By using this kind of switch with a gap of 3 mm as a peaking switch, a pulse generator can provide an output voltage with a peak voltage of 300 kV and a risetime of 3 ns on a resistance load of 150Ω.展开更多
文摘An improved Monte Carlo method was used to simulate the motion of electrons in c-C4F8 and SF6 gas mixtures for pulsed townsend discharge. The electron swarm parameters such as effective ionization coefficient, -↑α and drift velocity over the E/N range from 280~700 Td(1Td=10^-21 V·m^2) were calculated by employing a set of cross sections available in literature. From the variation cure of -↑α with SF6 partial pressure p, the limiting field (E/N)lim of gas mixture at different gas content was determined. It is found that the limiting field of c-C4F8 and SF6 gas mixture is higher than that of pure SF6 at any SF6 mixture ratio. Simulation results show excellent agreement with experiment data available in previous literature.
文摘HFO-1234 ze(E)(trans-1,3,3,3-tetrafluoropropene,chemical formula:C3H2F4)is an extremely environmentally friendly SF6 alternative gas with high electrical strength.In this paper,the partial discharge(PD)characteristics of HFO-1234 ze(E)/N2 mixtures were studied using the gas insulation test platform.The PD inception voltage of insulating gas under positive and negative half cycles of power frequency was tested.Using SF6/N2 mixtures as a control group,the effects of electrode spacing,mixing ratio and pressure on the insulation performance of HFO-1234 ze(E)/N2 mixtures were explored.The test results show that the PD inception voltage of the negative half-cycle of pure HFO-1234 ze(E)under short electrode spacing can reach 0.96-1.04 times of pure SF6 under different pressures;the PD inception voltage of40%HFO-1234 ze(E)/60%N2 mixtures at 0.3 MPa is 0.67-0.89 times that of SF6/N2 mixtures under the same conditions,which has great application prospect.
基金Supported by National Natural Science Foundation of China(50707023)
文摘This paper describes a realizable fabrication method to manufacture chemical gas sensors by using singlewalled carbon nanotubes(SWCNTs).The sensors were tested for the monitoring of SF_6 decomposition gas produced by partial discharge(PD) in GIS tank.The results showed a superior sensitivity,favorable reliability and good reproducibility. For further clarifying the relativity between sensor response and partial discharge activity,the discharge in GIS tank was monitored simultaneously through conventional pulse current method and a SWCNTs gas sensor,and the measurement results were put together for comparative analysis in this paper.The sensor response showed a great dependence on partial discharge characteristics.The sensor response increased nearly linearly with limits when the energy of discharge was persistently accumulated.Partial discharge power had a great influence on the response rate and the time delay.With the increase of partial discharge power,the response rate augmented almost in proportion while the time delay gradually becomes shorter with limits.The results were quite favorable to assess the partial discharge intensity and duration to some extent.Compared with pulse current method,the sensor was predominant to detect partial discharge exposed to constantly high levels of noise.It was capable of detecting partial discharge which was too weak to be detected with pulse current method.However,the sensor response didn't show much dependency on the apparent discharge of partial discharge.
基金supported by National Natural Science Foundation of China (No. 50437030)
文摘Structural design and tests on the characteristics of the SF6 gas switch with a small gap are presented. This kind of switch often works under high pressure and nanosecond pulse for getting pulse with faster risetime. The breakdown voltage and breakdown delay of a number of switches with different geometries, gas pressures and pulse waveforms were investigated. Experimental results suggested that the breakdown voltage increases linearly with the gas pressure, and the breakdown delay decreases with an increase in the gas pressure and a reduction in the gap distance of the switch under the same applied pulse. By using this kind of switch with a gap of 3 mm as a peaking switch, a pulse generator can provide an output voltage with a peak voltage of 300 kV and a risetime of 3 ns on a resistance load of 150Ω.