The metabolism of copper and arsenic in a copper pyrometallurgy process was studied through substance flow analysis method.The mass balance accounts and substance flow charts of copper and arsenic were established,ind...The metabolism of copper and arsenic in a copper pyrometallurgy process was studied through substance flow analysis method.The mass balance accounts and substance flow charts of copper and arsenic were established,indicators including direct recovery,waste recycle ratio,and resource efficiency were used to evaluate the metabolism efficiency of the system.The results showed that,the resource efficiency of copper was 97.58%,the direct recovery of copper in smelting,converting,and refining processes was 91.96%,97.13%and 99.47%,respectively.Meanwhile,for producing 1 t of copper,10 kg of arsenic was carried into the system,with the generation of 1.07 kg of arsenic in flotation tailing,8.50 kg of arsenic in arsenic waste residue,and 0.05 kg of arsenic in waste water.The distribution and transformation behaviors of arsenic in the smelting,converting,and refining processes were also analyzed,and some recommendations for improving copper resource efficiency and pollution control were proposed based on substance flow analysis.展开更多
That flow is the common feature of substance flow and fluid flow is the viewpoint emphasized in the paper. Some notes on fluid mechanics, including the two approaches of fluid flow description, were given. The concept...That flow is the common feature of substance flow and fluid flow is the viewpoint emphasized in the paper. Some notes on fluid mechanics, including the two approaches of fluid flow description, were given. The concepts of the chain and the chain group of product life cycles, which are essential for understanding the specific features of substance flow, were advanced. Taking the specific feature of substance flow into consideration, on the analogy of the two approaches in fluid mechanics, two approaches of substance flow analysis, i.e. L method and E model, were formulated. Illustrative models of steady and unsteady substance flow were sketched by both methods, and comparison between them was made in general.展开更多
Substance flow analysis was applied to analyzing the lead emissions in 2010. It turns out that in 2010, for every 1 kg of lead consumed, 0.48 kg lead is lost into the environment. The emissions in 2010 were estimated ...Substance flow analysis was applied to analyzing the lead emissions in 2010. It turns out that in 2010, for every 1 kg of lead consumed, 0.48 kg lead is lost into the environment. The emissions in 2010 were estimated to be 1.89×10^6 t, which were mainly from use (39.20%) and waste management&recycling (33.13%). The accumulative lead in 1960-2010 from the anthropogenic flow was estimated and the results show that the total accumulative lead in this period amounted to 19.54×10^6 t, which was equivalent to 14.26 kg and 2.04 g/m^2 at the present population and territory.展开更多
This paper discusses the use of substance flow analysis (SFA) as a tool to support quantified research on urban drainage systems. Based on the principle of mass balance, a static substance flow model is established ...This paper discusses the use of substance flow analysis (SFA) as a tool to support quantified research on urban drainage systems. Based on the principle of mass balance, a static substance flow model is established to describe and examine the routes and intensities of water, chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) for a representative hypothetical city (RH city) in China, which is a devised and scaled city using statistical characteristics of urban circumstances at the national level. It is estimated that the annual flux of water, COD, TN and TP through the urban drainage system in 2010 was 55.1 million m3, 16037.3 t, 1649.5 t and 209.7 t, respectively. The effluent of wastewater treatment plant (WWTP) was identified as the most important pathway for pollutant emissions, which con- tributed approximately 60% of COD, 65% of TN and 50% of TP to receiving water. During the wastewater treatment process, 1.0 million m3, 7042.5 t, 584.2 t and 161.4 t of the four studied substances had been transmitted into sludge, meanwhile 3813.0 t of COD and 394.0 t of TN were converted and emitted to the atmosphere. Compared with the representative hypothetical city of 2000, urban population and the area of urban built districts had expanded by approximately 90% and 80% respectively during the decade, resulting in a more than threefold increase in the input of substances into the urban drainage system. Thanks to the development of urban drainage systems, the total loads of the city were maintained at a similar level.展开更多
Vanadium is a vital strategic resource, and vanadium metabolism is an important part of the national socio-economic system of China. This study conducts accounting and scenario analysis on the life cycle of vanadium m...Vanadium is a vital strategic resource, and vanadium metabolism is an important part of the national socio-economic system of China. This study conducts accounting and scenario analysis on the life cycle of vanadium metabolism in China. Based on the character- istics of vanadium life cycle and substance flow analysis (SFA) framework, we present a quantitative evaluation of a static anthropogenic vanadium life cycle for the year 2010. Results show that anthropogenic vanadium consumption, stocks, and new domestic scrap are at 98.2, 21.2, and 4.1 kt, respectively; new scrap is usually discarded. The overall utilization ratio of vanadium is 32.2%. A large amount of vanadium is stockpiled into tailings, debris, slags, and other spent solids. A scenario analysis was conducted to analyze the future developmental trend of vanadium metabolism in China based on the SFA frame- work and the qualitative analysis of technology advance- ment and socio-economic development. The baseline year was set as 2010. Several indicators were proposed to simulate different scenarios from 2010 to 2030. The scenario analysis indicates that the next 20 years is a critical period for the vanadium industry in China. This paper discusses relevant policies that contribute to the improvement of sustainable vanadium utilization in China.展开更多
In this study,the metabolism of a hydrometallurgical process for tungsten extracting from wolframite was studied through substance flow analysis.The mass balance accounts,substance flow charts of tungsten and arsenic ...In this study,the metabolism of a hydrometallurgical process for tungsten extracting from wolframite was studied through substance flow analysis.The mass balance accounts,substance flow charts of tungsten and arsenic were established to evaluate the metabolism efficiency of the investigated system.The results showed that,the total tungsten resource efficiency of the system was 97.56%,and the tungsten recovery of unit process autoclaved alkali leaching,ion exchange,Mo removing,concentration and crystallization was 98.16%,98.94%,99.71%,99.89%,respectively.Meanwhile,for extracting 1 ton of tungsten into the qualified ammonium paratungstate,10.0414 kg of arsenic was carried into the system,with the generation of 7.2801 kg of arsenic in alkali leaching residue,1.5067 kg of tungsten in arsenic waste residue,and 1.2312 kg of tungsten in Mo residue.Besides,7.9 g of arsenic was discharged into nature environment with waste water,15.5 g of arsenic was entrained into the final APT.The distribution and transformation behaviors of arsenic during production were analyzed through phases change analysis,and some recommendations for improving the resource efficiency of tungsten and pollution control during production were also proposed based on the substance flow analysis in this study.展开更多
Research on carbon cycling has attracted attention from both scientists and policy-makers. Based on material flow analysis, this study systematically budgets the carbon inputs, outputs and balance from 1980 to 2013 fo...Research on carbon cycling has attracted attention from both scientists and policy-makers. Based on material flow analysis, this study systematically budgets the carbon inputs, outputs and balance from 1980 to 2013 for China's agro-ecosystem and its sub-systems, including agricultural land use, livestock breeding and rural life. The results show that from 1980 to 2013, both the carbon input and output were growing gradually, with the carbon input doubling from 1.6 Pg C/year in 1980 to 3.4 Pg C/year in 2013, while carbon output grew from 2.2 Pg C/year in 1980 to 3.8 Pg C/year in 2013. From 1980 to 2013, the crop production system in China has remained a carbon source, and the agricultural land uses were also almost all carbon sources instead of carbon sinks. As soil carbon stock plays a very important role in deciding the function of China's agro-ecosystem as a carbon sink or source, practices that can promote carbon storage and sequestration will be an essential component of low carbon agriculture development in China.展开更多
Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective appro...Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective approach for achieving high maize yields.However,the low mobility of P in soils and the scarcity of natural P resources have hindered the development of methods that can simultaneously optimize P use and mitigate the P-related environmental footprint at high plant densities.In this study,meta-analysis and substance flow analysis were conducted to evaluate the effects of different types of mineral P fertilizer on maize yield at varying plant densities and assess the flow of P from rock phosphate mining to P fertilizer use for maize production in China.A significantly higher yield was obtained at higher plant densities than at lower plant densities.The application of single superphosphate,triple super-phosphate,and calcium magnesium phosphate at high plant densities resulted in higher yields and a smaller environmental footprint than the application of diammonium phosphate and monoammonium phosphate.Our scenario analyses suggest that combining the optimal P type and application rate with a high plant density could increase maize yield by 22%.Further,the P resource use efficiency throughout the P supply chain increased by 39%,whereas the P-related environmental footprint decreased by 33%.Thus,simultaneously optimizing the P type and application rate at high plant densities achieved multiple objectives during maize production,indicating that combining P management with cropping techniques is a practical approach to sustainable maize production.These findings offer strategic,synergistic options for achieving sustainable agricultural development.展开更多
餐厨垃圾产量大、危害大、回收价值高,合理利用其中磷的资源价值,可规避其污染风险。综合利用情景分析与物质流分析方法,基于情景分析和养分流动概念模型,对苏南地区餐厨垃圾厌氧消化副产物以3种情景进行处理[沼液进行水处理,沼渣焚烧(...餐厨垃圾产量大、危害大、回收价值高,合理利用其中磷的资源价值,可规避其污染风险。综合利用情景分析与物质流分析方法,基于情景分析和养分流动概念模型,对苏南地区餐厨垃圾厌氧消化副产物以3种情景进行处理[沼液进行水处理,沼渣焚烧(情景1,S1);沼液还田,沼渣制有机肥(情景2,S2);沼液进行水处理,沼渣制有机肥(情景3,S3)],以100 t的餐厨垃圾处理规模为参考,分析总磷(TP)的物质流。结果表明:S1的餐厨垃圾中有0.99 kg TP还田,最终有0.96 kg TP进入水稻;S2的餐厨垃圾中有64.05 kg TP还田,最终有62.10 kg TP进入水稻;S3的餐厨垃圾中有8.67 kg TP还田,最终有8.49 kg TP进入水稻。结合经济性能对3种情景进行综合评价,发现S2为餐厨垃圾资源化的最优模式,TP的资源化利用率为91.53%,远高于S1和S3。展开更多
从铅的生产、铅制品的加工制造、铅制品的使用和废杂铅的处理等阶段详细地阐述了铅循环的'STAF(stocks and flows)'物质流分析模型.运用此模型分析了2006年我国铅的社会存量变化及其流动状况,并且计算出2000—2006年几项重要指...从铅的生产、铅制品的加工制造、铅制品的使用和废杂铅的处理等阶段详细地阐述了铅循环的'STAF(stocks and flows)'物质流分析模型.运用此模型分析了2006年我国铅的社会存量变化及其流动状况,并且计算出2000—2006年几项重要指标的平均值分别为:生产阶段的原料自给率PZ=79.28%;生产阶段使用废杂铅的比例PS=19.08%;加工制造阶段的原料自给率MZ=148.91%;加工制造阶段使用废杂铅的比例MS=30.25%;矿石指数R=0.834 9;废铅指数S=0.194 9.在此基础上总结了我国在铅资源循环利用方面的不足,并对铅工业的发展和资源的循环利用提出建议.展开更多
基金financial supports from the National Key R&D Program of China(No.2019YFC1907400)the National Natural Science Foundation of China(Nos.51904351,51620105013)。
文摘The metabolism of copper and arsenic in a copper pyrometallurgy process was studied through substance flow analysis method.The mass balance accounts and substance flow charts of copper and arsenic were established,indicators including direct recovery,waste recycle ratio,and resource efficiency were used to evaluate the metabolism efficiency of the system.The results showed that,the resource efficiency of copper was 97.58%,the direct recovery of copper in smelting,converting,and refining processes was 91.96%,97.13%and 99.47%,respectively.Meanwhile,for producing 1 t of copper,10 kg of arsenic was carried into the system,with the generation of 1.07 kg of arsenic in flotation tailing,8.50 kg of arsenic in arsenic waste residue,and 0.05 kg of arsenic in waste water.The distribution and transformation behaviors of arsenic in the smelting,converting,and refining processes were also analyzed,and some recommendations for improving copper resource efficiency and pollution control were proposed based on substance flow analysis.
文摘That flow is the common feature of substance flow and fluid flow is the viewpoint emphasized in the paper. Some notes on fluid mechanics, including the two approaches of fluid flow description, were given. The concepts of the chain and the chain group of product life cycles, which are essential for understanding the specific features of substance flow, were advanced. Taking the specific feature of substance flow into consideration, on the analogy of the two approaches in fluid mechanics, two approaches of substance flow analysis, i.e. L method and E model, were formulated. Illustrative models of steady and unsteady substance flow were sketched by both methods, and comparison between them was made in general.
基金Project (41171361) supported by the National Natural Science Foundation of China
文摘Substance flow analysis was applied to analyzing the lead emissions in 2010. It turns out that in 2010, for every 1 kg of lead consumed, 0.48 kg lead is lost into the environment. The emissions in 2010 were estimated to be 1.89×10^6 t, which were mainly from use (39.20%) and waste management&recycling (33.13%). The accumulative lead in 1960-2010 from the anthropogenic flow was estimated and the results show that the total accumulative lead in this period amounted to 19.54×10^6 t, which was equivalent to 14.26 kg and 2.04 g/m^2 at the present population and territory.
文摘This paper discusses the use of substance flow analysis (SFA) as a tool to support quantified research on urban drainage systems. Based on the principle of mass balance, a static substance flow model is established to describe and examine the routes and intensities of water, chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) for a representative hypothetical city (RH city) in China, which is a devised and scaled city using statistical characteristics of urban circumstances at the national level. It is estimated that the annual flux of water, COD, TN and TP through the urban drainage system in 2010 was 55.1 million m3, 16037.3 t, 1649.5 t and 209.7 t, respectively. The effluent of wastewater treatment plant (WWTP) was identified as the most important pathway for pollutant emissions, which con- tributed approximately 60% of COD, 65% of TN and 50% of TP to receiving water. During the wastewater treatment process, 1.0 million m3, 7042.5 t, 584.2 t and 161.4 t of the four studied substances had been transmitted into sludge, meanwhile 3813.0 t of COD and 394.0 t of TN were converted and emitted to the atmosphere. Compared with the representative hypothetical city of 2000, urban population and the area of urban built districts had expanded by approximately 90% and 80% respectively during the decade, resulting in a more than threefold increase in the input of substances into the urban drainage system. Thanks to the development of urban drainage systems, the total loads of the city were maintained at a similar level.
文摘Vanadium is a vital strategic resource, and vanadium metabolism is an important part of the national socio-economic system of China. This study conducts accounting and scenario analysis on the life cycle of vanadium metabolism in China. Based on the character- istics of vanadium life cycle and substance flow analysis (SFA) framework, we present a quantitative evaluation of a static anthropogenic vanadium life cycle for the year 2010. Results show that anthropogenic vanadium consumption, stocks, and new domestic scrap are at 98.2, 21.2, and 4.1 kt, respectively; new scrap is usually discarded. The overall utilization ratio of vanadium is 32.2%. A large amount of vanadium is stockpiled into tailings, debris, slags, and other spent solids. A scenario analysis was conducted to analyze the future developmental trend of vanadium metabolism in China based on the SFA frame- work and the qualitative analysis of technology advance- ment and socio-economic development. The baseline year was set as 2010. Several indicators were proposed to simulate different scenarios from 2010 to 2030. The scenario analysis indicates that the next 20 years is a critical period for the vanadium industry in China. This paper discusses relevant policies that contribute to the improvement of sustainable vanadium utilization in China.
基金financially supported by the National Key R&D Program of China(Grant No.2019YFC1907400)the National Natural Science Foundation of China(Grant Nos.51904351 and 51620105013)
文摘In this study,the metabolism of a hydrometallurgical process for tungsten extracting from wolframite was studied through substance flow analysis.The mass balance accounts,substance flow charts of tungsten and arsenic were established to evaluate the metabolism efficiency of the investigated system.The results showed that,the total tungsten resource efficiency of the system was 97.56%,and the tungsten recovery of unit process autoclaved alkali leaching,ion exchange,Mo removing,concentration and crystallization was 98.16%,98.94%,99.71%,99.89%,respectively.Meanwhile,for extracting 1 ton of tungsten into the qualified ammonium paratungstate,10.0414 kg of arsenic was carried into the system,with the generation of 7.2801 kg of arsenic in alkali leaching residue,1.5067 kg of tungsten in arsenic waste residue,and 1.2312 kg of tungsten in Mo residue.Besides,7.9 g of arsenic was discharged into nature environment with waste water,15.5 g of arsenic was entrained into the final APT.The distribution and transformation behaviors of arsenic during production were analyzed through phases change analysis,and some recommendations for improving the resource efficiency of tungsten and pollution control during production were also proposed based on the substance flow analysis in this study.
基金supported by the National Science & Technology Pillar Program during the 12th Five-year Plan Period (No. 2013BAD11B03)the National Natural Science Foundation of China (Nos. 71573260,71273153,and 71525007)the Basic Scientific Research Fund (No. BSRF201311) for National Nonprofit Institutes from Ministry of Agriculture(MoA),China
文摘Research on carbon cycling has attracted attention from both scientists and policy-makers. Based on material flow analysis, this study systematically budgets the carbon inputs, outputs and balance from 1980 to 2013 for China's agro-ecosystem and its sub-systems, including agricultural land use, livestock breeding and rural life. The results show that from 1980 to 2013, both the carbon input and output were growing gradually, with the carbon input doubling from 1.6 Pg C/year in 1980 to 3.4 Pg C/year in 2013, while carbon output grew from 2.2 Pg C/year in 1980 to 3.8 Pg C/year in 2013. From 1980 to 2013, the crop production system in China has remained a carbon source, and the agricultural land uses were also almost all carbon sources instead of carbon sinks. As soil carbon stock plays a very important role in deciding the function of China's agro-ecosystem as a carbon sink or source, practices that can promote carbon storage and sequestration will be an essential component of low carbon agriculture development in China.
基金supported by the National Natural Science Foundation of China(32301453 and 3272675)the China Postdoctoral Science Foundation(2023M730682)。
文摘Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective approach for achieving high maize yields.However,the low mobility of P in soils and the scarcity of natural P resources have hindered the development of methods that can simultaneously optimize P use and mitigate the P-related environmental footprint at high plant densities.In this study,meta-analysis and substance flow analysis were conducted to evaluate the effects of different types of mineral P fertilizer on maize yield at varying plant densities and assess the flow of P from rock phosphate mining to P fertilizer use for maize production in China.A significantly higher yield was obtained at higher plant densities than at lower plant densities.The application of single superphosphate,triple super-phosphate,and calcium magnesium phosphate at high plant densities resulted in higher yields and a smaller environmental footprint than the application of diammonium phosphate and monoammonium phosphate.Our scenario analyses suggest that combining the optimal P type and application rate with a high plant density could increase maize yield by 22%.Further,the P resource use efficiency throughout the P supply chain increased by 39%,whereas the P-related environmental footprint decreased by 33%.Thus,simultaneously optimizing the P type and application rate at high plant densities achieved multiple objectives during maize production,indicating that combining P management with cropping techniques is a practical approach to sustainable maize production.These findings offer strategic,synergistic options for achieving sustainable agricultural development.
文摘餐厨垃圾产量大、危害大、回收价值高,合理利用其中磷的资源价值,可规避其污染风险。综合利用情景分析与物质流分析方法,基于情景分析和养分流动概念模型,对苏南地区餐厨垃圾厌氧消化副产物以3种情景进行处理[沼液进行水处理,沼渣焚烧(情景1,S1);沼液还田,沼渣制有机肥(情景2,S2);沼液进行水处理,沼渣制有机肥(情景3,S3)],以100 t的餐厨垃圾处理规模为参考,分析总磷(TP)的物质流。结果表明:S1的餐厨垃圾中有0.99 kg TP还田,最终有0.96 kg TP进入水稻;S2的餐厨垃圾中有64.05 kg TP还田,最终有62.10 kg TP进入水稻;S3的餐厨垃圾中有8.67 kg TP还田,最终有8.49 kg TP进入水稻。结合经济性能对3种情景进行综合评价,发现S2为餐厨垃圾资源化的最优模式,TP的资源化利用率为91.53%,远高于S1和S3。
文摘从铅的生产、铅制品的加工制造、铅制品的使用和废杂铅的处理等阶段详细地阐述了铅循环的'STAF(stocks and flows)'物质流分析模型.运用此模型分析了2006年我国铅的社会存量变化及其流动状况,并且计算出2000—2006年几项重要指标的平均值分别为:生产阶段的原料自给率PZ=79.28%;生产阶段使用废杂铅的比例PS=19.08%;加工制造阶段的原料自给率MZ=148.91%;加工制造阶段使用废杂铅的比例MS=30.25%;矿石指数R=0.834 9;废铅指数S=0.194 9.在此基础上总结了我国在铅资源循环利用方面的不足,并对铅工业的发展和资源的循环利用提出建议.