Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok...Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.展开更多
Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluor...Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.展开更多
An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(...An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1.展开更多
Wnt信号通路通过调节许多组织的发育和体内平衡,控制胚胎发育和成体稳态,其信号异常不仅会造成发育缺陷,而且与多种癌症的发生密切相关。近年来,研究发现Wnt信号通路在骨肉瘤的发生发展及转移中扮演重要角色。分泌型卷曲相关蛋白1(secre...Wnt信号通路通过调节许多组织的发育和体内平衡,控制胚胎发育和成体稳态,其信号异常不仅会造成发育缺陷,而且与多种癌症的发生密切相关。近年来,研究发现Wnt信号通路在骨肉瘤的发生发展及转移中扮演重要角色。分泌型卷曲相关蛋白1(secreted frizzled-related protein 1,SFRP1)因部分结构与Wnt信号通路的卷曲蛋白受体(frizzled,FZD)高度同源而被认为是一类Wnt通路调节剂,调节骨肉瘤中的Wnt信号通路。本文就SFRP1-Wnt信号轴对骨肉瘤的调节作用进行综述。展开更多
Infection with high-risk human papillomavirus(HPV),including HPV-16 and HPV-18,is the main cause of malignancies,such as cervical cancer.Viral oncoproteins encoded by HPV are expressed in HPV-positive cancers and asso...Infection with high-risk human papillomavirus(HPV),including HPV-16 and HPV-18,is the main cause of malignancies,such as cervical cancer.Viral oncoproteins encoded by HPV are expressed in HPV-positive cancers and associated with the early cancer stages and the transformation of normal cells.The signaling pathways involved in the transformation of normal cells to cancerous form and the subsequently expressed programmed cell death-ligand 1(PD-L1)on the surface of the transformed cells lead to a disruption in recognition of tumor cells by the immune cell system,including T lymphocytes and dendritic cells which lead to the development of cervical cancer malignancy.These cells also produce modest levels of cytokines during exhaustion,tumor-infiltrating T CD4+cells with high levels of PD-1 and CD39 release considerable quantities of cytokines.The Wnt/β-catenin signaling pathway,which controls the expression of genes involved in the tumor cells’markers,is demonstrated to be one of the most potent cancer stimulants.It leads to the evasion of the tumor cells from immune cell detection and ultimately avoids being recognized by dendritic cells or T-cells.PD-L1,as an inhibitory immune checkpoint,is essential for controlling immune system activity by inhibiting T-cells’inflammatory function.In the present review,we looked into how Wnt/β-catenin affects the expression of PD-L1 and related genes like c-MYC in cancer cells and its role in the development of HPV-induced malignancy.We hypothesized that blocking these pathways could be a potential immunotherapy and cancer prevention method.展开更多
Objective While the upregulation of cytochrome P450 family 24 subfamily A member 1(CYP24A1)gene expression has been reported in colon cancer,its role in tumorigenesis remains largely unknown.In this study,we aimed to ...Objective While the upregulation of cytochrome P450 family 24 subfamily A member 1(CYP24A1)gene expression has been reported in colon cancer,its role in tumorigenesis remains largely unknown.In this study,we aimed to investigate the involvement of CYP24A1 in Wnt pathway regulation via the nuclear factor kappa B(NF-κB)pathway.Methods The human colon cancer cell lines HCT-116 and Caco-2 were subjected to stimulation with interleukin-6(IL-6)as well as tumor necrosis factor alpha(TNF-α),with subsequent treatment using the NF-κB pathway-specific inhibitor ammonium pyrrolidinedithiocarbamate(PDTC).Furthermore,CYP24A1 expression was subjected to knockdown via the use of small interfering RNA(siRNA).Subsequently,NF-κB pathway activation was determined by an electrophoretic mobility shift assay,and the transcriptional activity ofβ-catenin was determined by a dual-luciferase reporter assay.A mouse ulcerative colitis(UC)-associated carcinogenesis model was established,wherein TNF-αand the NF-κB pathway were blocked by anti-TNF-αmonoclonal antibody and NF-κB antisense oligonucleotides,respectively.Then the tumor size and protein level of CYP24A1 were determined.Results IL-6 and TNF-αupregulated CYP24A1 expression and activated the NF-κB pathway in colon cancer cells.PDTC significantly inhibited this increase in CYP24A1 expression.Additionally,knockdown of CYP24A1 expression by siRNA could partially antagonize Wnt pathway activation.Upregulated CYP24A1 expression was observed in the colonic epithelial cells of UC-associated carcinoma mouse models.Anti-TNF-αmonoclonal antibody and NF-κB antisense oligonucleotides decreased the tumor size and suppressed CYP24A1 expression.Conclusion Taken together,this study suggests that inflammatory factors may increase CYP24A1 expression via NF-κB pathway activation,which in turn stimulates Wnt signaling.展开更多
AIM: To explore the contribution of AXIN1, AXIN2 and beta-catenin, components of Wnt signaling pathway, to the carcinogenesis of gastric cancer (GC), we examined AXIN1, AXIN2 exon7 and CTNNB1 (encoding beta- catenin) ...AIM: To explore the contribution of AXIN1, AXIN2 and beta-catenin, components of Wnt signaling pathway, to the carcinogenesis of gastric cancer (GC), we examined AXIN1, AXIN2 exon7 and CTNNB1 (encoding beta- catenin) exon3 mutations in 70 GCs. METHODS: The presence of mutations was identified by polymerase chain reaction (PCR)-based denaturing high-performance liquid chromatography and direct DNA sequencing. Beta-catenin expression was detected by immunohistochemical analysis. RESULTS: Among the 70 GCs, 5 (7.1%) had mutations in one or two of these three components. A frameshift mutation (1 bp deletion) in exon7 of AXIN2 was found in one case. Four cases, including the case with a mutation in AXIN2, had frameshift mutations and missense mutations in AXIN1. Five single nucleotide polymorphisms (SNPs), 334 C>T, 874 C>T, 1396 G>A, 1690 C>T and 1942 T>G, were identified in AXIN1. A frameshift mutation (27 bp deletion) spanning exon3 of CTNNB1 was observed in one case. All four cases with mutations in AXIN1 and AXIN2 showed nuclear beta- catenin expression. CONCLUSION: These data indicate that the mutationsin AXIN1 and AXIN2 may contribute to gastric carcino- genesis.展开更多
We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acu...We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acute cerebral ischemia/reperfusion. Our results demonstrate that cell apoptosis increases in the CA1 region following ischemia/reperfusion. In addition, β-catenin and glycogen synthase kinase-3β protein expression gradually increases, peaking at 48 hours following reperfusion. Dickkopf-1 administration, after cerebral ischemia/reperfusion injury, results in decreased cell apoptosis, and β-catenin and glycogen synthase kinase-3β expression, in the CA1 region. This suggests that β-catenin and glycogen synthase kinase-3β, both components of the Wnt signaling pathway, participate in cell apoptosis following cerebral ischemia/reperfusion injury.展开更多
Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica s...Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica sinensis polysaccharides(ASP)are major effective ingredients of traditional Chinese medicine Angelica with multi-target anti-oxidative stress features.In the current study,we investigated the protective roles and mechanisms of ASP on chemotherapy-induced bone marrow stromal cell(BMSC)damage.The human bone marrow stromal cell line HS-5 cells were divided into control group,5-FU group,5-FU+ASP group,and 5-FU+LiCl group to investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation inhibition.The results showed that 5-FU inhibits the growth of HS-5 cells in a time and dose-dependent manner;however,ASP partially counteracted the 5-FU-induced decrease in cell viability,whereas Wnt signaling inhibitor Dkk1 antagonized the effect of ASP on HS-5 cells.ASP reversed the decrease in total cytoplasmicβ-catenin,p-GSK-3β,and CyclinD1 following 5-FU treatment and modulated nuclear expression ofβ-catenin,Lef-1,and C-myc proteins.Furthermore,ASP also enhanced the antioxidant capacity of cells and reduced 5-FU-induced oxidative stress,attenuated FoxO1 expression,thus weakened its downstream apoptosis-related proteins and G0/G1 checkpoint-associated p27^(Kip1) expression to alleviate 5-FU-induced apoptosis and to promote cell cycle progression.All the results above suggest that the protective role of ASP in 5-FU-treated BMSCs proliferation for the chemotherapy may be related to its activating Wnt/β-catenin signaling and keeping homeostasis betweenβ-catenin and FoxO1 under oxidative stress.The study provides a potential therapeutic strategy for alleviating chemotherapeutic damage on BMSCs.展开更多
Objective: The aim of this study was to investigate the effect and possible mechanism of action of roof plate-specific spondin1 (Rspo1) in the apoptosis of rat bone marrow mesenchymal stem cells (BMSCs). Methods: Oste...Objective: The aim of this study was to investigate the effect and possible mechanism of action of roof plate-specific spondin1 (Rspo1) in the apoptosis of rat bone marrow mesenchymal stem cells (BMSCs). Methods: Osteogenic and adipogenic differentiation of BMSCs was identified by Alizarin Red and Oil Red O staining, respectively. BMSC surface markers (cluster of differentiation 29 [CD29], CD90, and CD45) were detected using flow cytometry. BMSCs were transfected with an adenoviral vector encoding Rspo1 (BMSCs-Rspo1 group). The expression levels of Rspo1 gene and Rspo1 protein in the BMSCs-Rspo1 group and the two control groups (untransfected BMSCs group and BMSCs-green fluorescent protein [GFP] group) were analyzed and compared by quantitative polymerase chain reaction and Western blot. The occurrence of apoptosis in the three groups was detected by flow cytometry and acridine orange-ethidium bromide (AO-EB) double dyeing. The activity of the Wnt/β-catenin signaling pathway was evaluated by measuring the expression levels of the key proteins of the pathway (β-catenin, c-Jun N-terminal kinase [JNK], and phospho-JNK). Results: Osteogenic and adipogenic differentiation was confirmed in cultured BMSCs by the positive expression of CD29 and CD90 and the negative expression of CD45. Significantly increased expression levels of Rspo1 protein in the BMSCs-Rspo1 group compared to those in the BMSCs (0.60 ± 0.05 vs. 0.13 ± 0.02;t=95.007, P=0.001) and BMSCs-GFP groups (0.60 ± 0.05 vs. 0.10 ± 0.02;t=104.842, P=0.001) were observed. The apoptotic rate was significantly lower in the BMSCs-Rspo1 group compared with those in the BMSCs group ([24.06 ± 2.37]% vs.[40.87 ± 2.82]%;t =49.872, P =0.002) and the BMSCs-GFP group ([24.06 ± 2.37]% vs.[42.34 ± 0.26]%;t =62.358, P =0.001). In addition, compared to the BMSCs group, the protein expression levels of β-catenin (2.67 ± 0.19 vs. 1.14 ± 0.14;t =-9.217, P =0.000) and JNK (1.87 ± 0.17 vs. 0.61 ± 0.07;t =-22.289, P =0.000) were increased in the BMSCs-Rspo1 group. Compared to the BMSCs-GFP group, the protein expression levels of β-catenin (2.67 ± 0.19 vs. 1.44 ± 0.14;t =-5.692, P =0.000) and JNK (1.87 ± 0.17 vs. 0.53 ± 0.06;t =-10.589, P =0.000) were also upregulated in the BMSCs-Rspo1 group. Moreover, the protein expression levels of phospho-JNK were increased in the BMSCs-Rspo1 group compared to those in the BMSCs group (1.89 ± 0.10 vs. 0.63 ± 0.09;t =-8.975, P =0.001) and the BMSCs-GFP group (1.89 ± 0.10 vs. 0.69 ± 0.08;t =-9.483, P =0.001). Conclusion: The Wnt/β-catenin pathway could play a vital role in the Rspo1-mediated inhibition of apoptosis in BMSCs.展开更多
Background: Mesenchymal stem cells (MSCs) are bone marrow stem cells which play an important role in tissue repair. The treatment with MSCs will be likely to aggravate the degree of fibrosis. The Wnt/β-catenin sig...Background: Mesenchymal stem cells (MSCs) are bone marrow stem cells which play an important role in tissue repair. The treatment with MSCs will be likely to aggravate the degree of fibrosis. The Wnt/β-catenin signaling pathway is involved in developmental and physiological processes, such as fibrosis. Dickkopfs (DKKs) are considered as an antagonist to block Wnt/β-catenin signaling pathway by binding the receptor of receptor-related protein (LRP5/6). DKK1 was chosen in attempt to inhibit fibrosis of MSCs by lowering activity of Wnt/β-catenin signaling pathway. Methods: Stable MSCs were randomly divided into four groups: MSCs control, MSCs + transforming growth factor-β (TGF-β), MSCs + DKK1, and MSCs + TGF-β + DKK1. Flow cytometry was used to identify MSCs. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide test. lmmunofluorescence was used to detect protein expression in the Wnt/β-catenin signaling pathways. Western blotting analysis was employed to test expression of fibroblast surface markers and, finally, real-time reverse transcription polymerase chain reaction was employed to test mRNA expression offibroblast surface markers and Wnt/β-catenin signaling proteins. Results: Cultivated MSCs were found to conform to the characteristics of standard MSCs: expression of cluster of differentiation (CD) 73, 90, and 105, not expression of 34, 45, and 79. We found that DKK1 could maintain the normal cell morphology of MSCs. Western blotting analysis showed that fibroblast surface markers were expressed in high quantities in the group MSCs + TGF-β. However, the expression was lower in the MSCs + TGF-β + DKK1. Immunofluorescence showed high expression of all Wnt/β-catnin molecules in the MSCs + TGF-β group but expressed in lower quantities in MSCs + TGF-β + DKK1 group. Finally, mRNA expression of fibroblast markers vimentin, α-smooth muscle actin and Wnt/β-catenin signaling proteins β-catenin, T-cell factor, and glycogen synthase kinase-3β was significantly increased in MSCs + TGF-β group compared to control (P 〈 0.05). Expression of the same fibroblast markers and Wnt/β-catenin was decreased to regular quantities in the MSCs + TGF-β + DKK 1 group. Conclusions: DKK1, Wnt/β-catenin inhibitors, blocks the Wnt/β-catenin signaling pathway to inhibit the process of MSCs fibrosis. It might provide some new ways for clinical treatment of certain diseases.展开更多
Objective: To investigate the effects of Ganoderma lucidum polysaccharides(GL-PS) on human fibroblasts and skin wound healing in Kunming male mice and to explore the putative molecular mechanism. Methods: Primary huma...Objective: To investigate the effects of Ganoderma lucidum polysaccharides(GL-PS) on human fibroblasts and skin wound healing in Kunming male mice and to explore the putative molecular mechanism. Methods: Primary human skin fibroblasts were cultured. The viability of fibroblasts treated with 0, 10, 20, 40, 80, and 160 μg/mL of GL-PS, respectively were detected by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-Htetrazolium bromide(MTT). The migration ability of fibroblasts treated with 0, 10, 20, and 40 μg/mL of GL-PS were measured by transwell assay. The secretion of the C-terminal peptide of procollagen type Ⅰ(CICP) and transforming growth factor-β1(TGF-β1) in the cell supernatant was tested by enzyme-linked immunosorbent assay. The expression of β-catenin was detected by Western blot. Furthermore, the Kunming mouse model with full-layer skin resection trauma was established, and was treated with 10, 20, and 40 mg/mL of GL-PS, respectively as external use. The size of the wound was measured daily, complete healing time in each group was recorded and the percentage of wound contraction was calculated. Results: Compared with the control group, 10, 20, and 40 μg/mL of GL-PS significantly increased the viability of fibroblasts, promoted the migration ability of fibroblasts, and up-regulated the expressions of CICP and TGF-β1 in fibroblasts(P<0.05 or P<0.01). The expression of β-catenin in fibroblasts treated with 20 and 40 μg/mL of GL-PS was significantly higher than that of the control group(P<0.01). Furthermore, after external use of 10, 20, and 40 mg/mL of GL-PS, the rates of wound healing in mice were significantly higher and the wound healing time was significantly less than the control group(P<0.05 or P<0.01). Conclusion: A certain concentration of GL-PS may promote wound healing via activation of the Wnt/β-catenin signaling pathway and up-regulation of TGF-β1, which might serve as a promising source of skin wound healing.展开更多
基金supported by the National Natural Science Foundation of China,No.81771250(to XC)the Natural Science Foundation of Fujian Province,Nos.2020J011059(to XC),2020R1011004(to YW),2021J01374(to XZ)+1 种基金Medical Innovation Project of Fujian Province,No.2021 CXB002(to XC)Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare(to XC)。
文摘Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.
基金supported by the Zhejiang Province Traditional Chinese Medicine Health Science and Technology Program(2023ZL570).
文摘Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.
基金The Fund of National Cancer Center Research and Development(26-A-4),The Grants-in-Aid for Scientific Research(Grant Nos.15K10451,16K10866 and 16K20063)from Japan Society for the Promotion of Science.
文摘An important factor in the emergence and progre sion of osteosarcoma(OS)is the dysregulated expression of microRNAs(miRNAs).Transcription factor 7-like 1(TCF7LI),a member of the T cell factor/lymphoid enhancer factor(TCF/LEF)transcription factor family,interacts with the Wnt signaling pathway regulator β-catenin and acts as a DNA-specific binding protein.This study sought to elucidate the impact of the interaction between miR 3293p and TCF7L1 on.the growth and apoptosis of OS and analyze the regulatory expression relationship between miRNA and mRNA in osteosarcoma cells using a variety of approaches.MiR329-3p was significantly downregulated,while TCF7L1 was considerably up-regulated in all examined OS cell lines.Additionally,a clinical comparison study was performed using the TCGA database.Subsequently,the regulatory relationship between miR-329-3p and TCF7L1 on the proliferation and apoptosis of OS cells was verified through in vitro and in vivo experiments.When miR 329-3p was transfected into the OS cell line,the expression of TCF7L1 decreased,the proliferation of OS cells was inhibited,the cytoskeleton disintegrated,and the nucleus condensed to fom apoptotic bodies.The expression of proteins that indicate apoptosis increased simultaneously.The cell cycle was arrested in the G0/G1 phase,and the G1/S transition was blocked.The introduction of miR 3293p also inhibited downstream Cyclin D1 of the Wnt pathway.Xenograf experiments indicated that the overexpression of miR-329-3p signi ficanly inhibited the growth of OS xenografts in nude mice,and the expression of TCF7L1 and C-Myc in tumor tssues decreased.MiR 329-3p was significantly reduced in OS cells and played a suppressive role in tumorigenesis and proliferation by targeting TCF7L1 both in vitro and in vivo.Osteosarcoma cell cycle arrest and pathway inhibition were observed upon the regulation of TCF7LI by miR 3293p.Summarizing these results,it can be inferred that miR.3293p exerts anticancer efects in osteosarcoma by inhibiting TCF7L1.
文摘Wnt信号通路通过调节许多组织的发育和体内平衡,控制胚胎发育和成体稳态,其信号异常不仅会造成发育缺陷,而且与多种癌症的发生密切相关。近年来,研究发现Wnt信号通路在骨肉瘤的发生发展及转移中扮演重要角色。分泌型卷曲相关蛋白1(secreted frizzled-related protein 1,SFRP1)因部分结构与Wnt信号通路的卷曲蛋白受体(frizzled,FZD)高度同源而被认为是一类Wnt通路调节剂,调节骨肉瘤中的Wnt信号通路。本文就SFRP1-Wnt信号轴对骨肉瘤的调节作用进行综述。
基金supported by the Immunology Research Center,Tabriz University of Medical Sciences,Tabriz,Iran.
文摘Infection with high-risk human papillomavirus(HPV),including HPV-16 and HPV-18,is the main cause of malignancies,such as cervical cancer.Viral oncoproteins encoded by HPV are expressed in HPV-positive cancers and associated with the early cancer stages and the transformation of normal cells.The signaling pathways involved in the transformation of normal cells to cancerous form and the subsequently expressed programmed cell death-ligand 1(PD-L1)on the surface of the transformed cells lead to a disruption in recognition of tumor cells by the immune cell system,including T lymphocytes and dendritic cells which lead to the development of cervical cancer malignancy.These cells also produce modest levels of cytokines during exhaustion,tumor-infiltrating T CD4+cells with high levels of PD-1 and CD39 release considerable quantities of cytokines.The Wnt/β-catenin signaling pathway,which controls the expression of genes involved in the tumor cells’markers,is demonstrated to be one of the most potent cancer stimulants.It leads to the evasion of the tumor cells from immune cell detection and ultimately avoids being recognized by dendritic cells or T-cells.PD-L1,as an inhibitory immune checkpoint,is essential for controlling immune system activity by inhibiting T-cells’inflammatory function.In the present review,we looked into how Wnt/β-catenin affects the expression of PD-L1 and related genes like c-MYC in cancer cells and its role in the development of HPV-induced malignancy.We hypothesized that blocking these pathways could be a potential immunotherapy and cancer prevention method.
基金supported by grants from the National Natural Science Foundation of China(No.81370500 and No.81770559)CAMS Innovation Fund for Medical Sciences(No.CIFMS2021-I2M-C&T-A-001 and No.2016-I2M-3-005)the CAMS Initiative for Innovative Medicine(No.CAMS-a12M 2016-I2M-1-007).
文摘Objective While the upregulation of cytochrome P450 family 24 subfamily A member 1(CYP24A1)gene expression has been reported in colon cancer,its role in tumorigenesis remains largely unknown.In this study,we aimed to investigate the involvement of CYP24A1 in Wnt pathway regulation via the nuclear factor kappa B(NF-κB)pathway.Methods The human colon cancer cell lines HCT-116 and Caco-2 were subjected to stimulation with interleukin-6(IL-6)as well as tumor necrosis factor alpha(TNF-α),with subsequent treatment using the NF-κB pathway-specific inhibitor ammonium pyrrolidinedithiocarbamate(PDTC).Furthermore,CYP24A1 expression was subjected to knockdown via the use of small interfering RNA(siRNA).Subsequently,NF-κB pathway activation was determined by an electrophoretic mobility shift assay,and the transcriptional activity ofβ-catenin was determined by a dual-luciferase reporter assay.A mouse ulcerative colitis(UC)-associated carcinogenesis model was established,wherein TNF-αand the NF-κB pathway were blocked by anti-TNF-αmonoclonal antibody and NF-κB antisense oligonucleotides,respectively.Then the tumor size and protein level of CYP24A1 were determined.Results IL-6 and TNF-αupregulated CYP24A1 expression and activated the NF-κB pathway in colon cancer cells.PDTC significantly inhibited this increase in CYP24A1 expression.Additionally,knockdown of CYP24A1 expression by siRNA could partially antagonize Wnt pathway activation.Upregulated CYP24A1 expression was observed in the colonic epithelial cells of UC-associated carcinoma mouse models.Anti-TNF-αmonoclonal antibody and NF-κB antisense oligonucleotides decreased the tumor size and suppressed CYP24A1 expression.Conclusion Taken together,this study suggests that inflammatory factors may increase CYP24A1 expression via NF-κB pathway activation,which in turn stimulates Wnt signaling.
文摘AIM: To explore the contribution of AXIN1, AXIN2 and beta-catenin, components of Wnt signaling pathway, to the carcinogenesis of gastric cancer (GC), we examined AXIN1, AXIN2 exon7 and CTNNB1 (encoding beta- catenin) exon3 mutations in 70 GCs. METHODS: The presence of mutations was identified by polymerase chain reaction (PCR)-based denaturing high-performance liquid chromatography and direct DNA sequencing. Beta-catenin expression was detected by immunohistochemical analysis. RESULTS: Among the 70 GCs, 5 (7.1%) had mutations in one or two of these three components. A frameshift mutation (1 bp deletion) in exon7 of AXIN2 was found in one case. Four cases, including the case with a mutation in AXIN2, had frameshift mutations and missense mutations in AXIN1. Five single nucleotide polymorphisms (SNPs), 334 C>T, 874 C>T, 1396 G>A, 1690 C>T and 1942 T>G, were identified in AXIN1. A frameshift mutation (27 bp deletion) spanning exon3 of CTNNB1 was observed in one case. All four cases with mutations in AXIN1 and AXIN2 showed nuclear beta- catenin expression. CONCLUSION: These data indicate that the mutationsin AXIN1 and AXIN2 may contribute to gastric carcino- genesis.
基金supported by the Medical Research Key Program of Hebei Province,No.20110531
文摘We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acute cerebral ischemia/reperfusion. Our results demonstrate that cell apoptosis increases in the CA1 region following ischemia/reperfusion. In addition, β-catenin and glycogen synthase kinase-3β protein expression gradually increases, peaking at 48 hours following reperfusion. Dickkopf-1 administration, after cerebral ischemia/reperfusion injury, results in decreased cell apoptosis, and β-catenin and glycogen synthase kinase-3β expression, in the CA1 region. This suggests that β-catenin and glycogen synthase kinase-3β, both components of the Wnt signaling pathway, participate in cell apoptosis following cerebral ischemia/reperfusion injury.
基金supported by the National Natural Science Foundation of China(Grant No.81873103)the Foundation and Frontier Research Project of Chongqing Science and Technology Commission(Grant No.cstc2014jcyjA10001).
文摘Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica sinensis polysaccharides(ASP)are major effective ingredients of traditional Chinese medicine Angelica with multi-target anti-oxidative stress features.In the current study,we investigated the protective roles and mechanisms of ASP on chemotherapy-induced bone marrow stromal cell(BMSC)damage.The human bone marrow stromal cell line HS-5 cells were divided into control group,5-FU group,5-FU+ASP group,and 5-FU+LiCl group to investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation inhibition.The results showed that 5-FU inhibits the growth of HS-5 cells in a time and dose-dependent manner;however,ASP partially counteracted the 5-FU-induced decrease in cell viability,whereas Wnt signaling inhibitor Dkk1 antagonized the effect of ASP on HS-5 cells.ASP reversed the decrease in total cytoplasmicβ-catenin,p-GSK-3β,and CyclinD1 following 5-FU treatment and modulated nuclear expression ofβ-catenin,Lef-1,and C-myc proteins.Furthermore,ASP also enhanced the antioxidant capacity of cells and reduced 5-FU-induced oxidative stress,attenuated FoxO1 expression,thus weakened its downstream apoptosis-related proteins and G0/G1 checkpoint-associated p27^(Kip1) expression to alleviate 5-FU-induced apoptosis and to promote cell cycle progression.All the results above suggest that the protective role of ASP in 5-FU-treated BMSCs proliferation for the chemotherapy may be related to its activating Wnt/β-catenin signaling and keeping homeostasis betweenβ-catenin and FoxO1 under oxidative stress.The study provides a potential therapeutic strategy for alleviating chemotherapeutic damage on BMSCs.
基金Shanxi Scholarship Council of China (grant 2012-048 awarded to Li-Hong Yang, 2013-Key Project 3 to Jun Xie, 2016-051 to Zhi- Zhen Liu)National Natural Science Foundation Projects [81671462] awarded to Jun Xie+1 种基金Shanxi Province Key Laboratory of Birth Defects and Cell Regeneration and Research Project awarded to Jun Xiethe Fund for Shanxi "T331 Project" Key Subjects Construction awarded to Jun Xie.
文摘Objective: The aim of this study was to investigate the effect and possible mechanism of action of roof plate-specific spondin1 (Rspo1) in the apoptosis of rat bone marrow mesenchymal stem cells (BMSCs). Methods: Osteogenic and adipogenic differentiation of BMSCs was identified by Alizarin Red and Oil Red O staining, respectively. BMSC surface markers (cluster of differentiation 29 [CD29], CD90, and CD45) were detected using flow cytometry. BMSCs were transfected with an adenoviral vector encoding Rspo1 (BMSCs-Rspo1 group). The expression levels of Rspo1 gene and Rspo1 protein in the BMSCs-Rspo1 group and the two control groups (untransfected BMSCs group and BMSCs-green fluorescent protein [GFP] group) were analyzed and compared by quantitative polymerase chain reaction and Western blot. The occurrence of apoptosis in the three groups was detected by flow cytometry and acridine orange-ethidium bromide (AO-EB) double dyeing. The activity of the Wnt/β-catenin signaling pathway was evaluated by measuring the expression levels of the key proteins of the pathway (β-catenin, c-Jun N-terminal kinase [JNK], and phospho-JNK). Results: Osteogenic and adipogenic differentiation was confirmed in cultured BMSCs by the positive expression of CD29 and CD90 and the negative expression of CD45. Significantly increased expression levels of Rspo1 protein in the BMSCs-Rspo1 group compared to those in the BMSCs (0.60 ± 0.05 vs. 0.13 ± 0.02;t=95.007, P=0.001) and BMSCs-GFP groups (0.60 ± 0.05 vs. 0.10 ± 0.02;t=104.842, P=0.001) were observed. The apoptotic rate was significantly lower in the BMSCs-Rspo1 group compared with those in the BMSCs group ([24.06 ± 2.37]% vs.[40.87 ± 2.82]%;t =49.872, P =0.002) and the BMSCs-GFP group ([24.06 ± 2.37]% vs.[42.34 ± 0.26]%;t =62.358, P =0.001). In addition, compared to the BMSCs group, the protein expression levels of β-catenin (2.67 ± 0.19 vs. 1.14 ± 0.14;t =-9.217, P =0.000) and JNK (1.87 ± 0.17 vs. 0.61 ± 0.07;t =-22.289, P =0.000) were increased in the BMSCs-Rspo1 group. Compared to the BMSCs-GFP group, the protein expression levels of β-catenin (2.67 ± 0.19 vs. 1.44 ± 0.14;t =-5.692, P =0.000) and JNK (1.87 ± 0.17 vs. 0.53 ± 0.06;t =-10.589, P =0.000) were also upregulated in the BMSCs-Rspo1 group. Moreover, the protein expression levels of phospho-JNK were increased in the BMSCs-Rspo1 group compared to those in the BMSCs group (1.89 ± 0.10 vs. 0.63 ± 0.09;t =-8.975, P =0.001) and the BMSCs-GFP group (1.89 ± 0.10 vs. 0.69 ± 0.08;t =-9.483, P =0.001). Conclusion: The Wnt/β-catenin pathway could play a vital role in the Rspo1-mediated inhibition of apoptosis in BMSCs.
基金Financial support and sponsorship This work was supported by the National Natural Science Foundation of China (No. 81301448), and the Key Medical Talent Foundation of Jiangsu Provincial Center for Disease Prevention and Control (No. JKRC20110029).
文摘Background: Mesenchymal stem cells (MSCs) are bone marrow stem cells which play an important role in tissue repair. The treatment with MSCs will be likely to aggravate the degree of fibrosis. The Wnt/β-catenin signaling pathway is involved in developmental and physiological processes, such as fibrosis. Dickkopfs (DKKs) are considered as an antagonist to block Wnt/β-catenin signaling pathway by binding the receptor of receptor-related protein (LRP5/6). DKK1 was chosen in attempt to inhibit fibrosis of MSCs by lowering activity of Wnt/β-catenin signaling pathway. Methods: Stable MSCs were randomly divided into four groups: MSCs control, MSCs + transforming growth factor-β (TGF-β), MSCs + DKK1, and MSCs + TGF-β + DKK1. Flow cytometry was used to identify MSCs. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide test. lmmunofluorescence was used to detect protein expression in the Wnt/β-catenin signaling pathways. Western blotting analysis was employed to test expression of fibroblast surface markers and, finally, real-time reverse transcription polymerase chain reaction was employed to test mRNA expression offibroblast surface markers and Wnt/β-catenin signaling proteins. Results: Cultivated MSCs were found to conform to the characteristics of standard MSCs: expression of cluster of differentiation (CD) 73, 90, and 105, not expression of 34, 45, and 79. We found that DKK1 could maintain the normal cell morphology of MSCs. Western blotting analysis showed that fibroblast surface markers were expressed in high quantities in the group MSCs + TGF-β. However, the expression was lower in the MSCs + TGF-β + DKK1. Immunofluorescence showed high expression of all Wnt/β-catnin molecules in the MSCs + TGF-β group but expressed in lower quantities in MSCs + TGF-β + DKK1 group. Finally, mRNA expression of fibroblast markers vimentin, α-smooth muscle actin and Wnt/β-catenin signaling proteins β-catenin, T-cell factor, and glycogen synthase kinase-3β was significantly increased in MSCs + TGF-β group compared to control (P 〈 0.05). Expression of the same fibroblast markers and Wnt/β-catenin was decreased to regular quantities in the MSCs + TGF-β + DKK 1 group. Conclusions: DKK1, Wnt/β-catenin inhibitors, blocks the Wnt/β-catenin signaling pathway to inhibit the process of MSCs fibrosis. It might provide some new ways for clinical treatment of certain diseases.
基金Supported by the Fundamental Research Funds for the Central Universities of Central South University(No.2017zzts235)
文摘Objective: To investigate the effects of Ganoderma lucidum polysaccharides(GL-PS) on human fibroblasts and skin wound healing in Kunming male mice and to explore the putative molecular mechanism. Methods: Primary human skin fibroblasts were cultured. The viability of fibroblasts treated with 0, 10, 20, 40, 80, and 160 μg/mL of GL-PS, respectively were detected by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-Htetrazolium bromide(MTT). The migration ability of fibroblasts treated with 0, 10, 20, and 40 μg/mL of GL-PS were measured by transwell assay. The secretion of the C-terminal peptide of procollagen type Ⅰ(CICP) and transforming growth factor-β1(TGF-β1) in the cell supernatant was tested by enzyme-linked immunosorbent assay. The expression of β-catenin was detected by Western blot. Furthermore, the Kunming mouse model with full-layer skin resection trauma was established, and was treated with 10, 20, and 40 mg/mL of GL-PS, respectively as external use. The size of the wound was measured daily, complete healing time in each group was recorded and the percentage of wound contraction was calculated. Results: Compared with the control group, 10, 20, and 40 μg/mL of GL-PS significantly increased the viability of fibroblasts, promoted the migration ability of fibroblasts, and up-regulated the expressions of CICP and TGF-β1 in fibroblasts(P<0.05 or P<0.01). The expression of β-catenin in fibroblasts treated with 20 and 40 μg/mL of GL-PS was significantly higher than that of the control group(P<0.01). Furthermore, after external use of 10, 20, and 40 mg/mL of GL-PS, the rates of wound healing in mice were significantly higher and the wound healing time was significantly less than the control group(P<0.05 or P<0.01). Conclusion: A certain concentration of GL-PS may promote wound healing via activation of the Wnt/β-catenin signaling pathway and up-regulation of TGF-β1, which might serve as a promising source of skin wound healing.