Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ...Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.展开更多
Parallel and orthogonal tests are used to explore the influence law of the dosage and age of curing agent on the strength of solidified sludge. The test results show that: 1) The strength of solidified sludge is mainl...Parallel and orthogonal tests are used to explore the influence law of the dosage and age of curing agent on the strength of solidified sludge. The test results show that: 1) The strength of solidified sludge is mainly related to the cement content and dry soil content, and presents a good linear relationship. The influence of gypsum content is not significant. As the age increases, the strength is greatly affected by the cement content. 2) At different ages, the unconfined compression strength of solidified sludge presents a linear relationship, and the change law of later strength can be predicted by early strength. 3) Degree of influence of curing agent dosage: cement dosage > gypsum dosage > dry soil dosage. The optimal mixture ratio is 8% of cement content, 30% of gypsum content (proportion of cement content), and 4 times of dry soil content (multiple of cement content).展开更多
基金Funded by the National Key Research and Development Program of China (No.2019YFC1906202)the Guangxi Key Research and Development Plan (Nos.Guike AA18242007-3, Guike AB19259008, and Guike AB20297014)。
文摘Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.
文摘Parallel and orthogonal tests are used to explore the influence law of the dosage and age of curing agent on the strength of solidified sludge. The test results show that: 1) The strength of solidified sludge is mainly related to the cement content and dry soil content, and presents a good linear relationship. The influence of gypsum content is not significant. As the age increases, the strength is greatly affected by the cement content. 2) At different ages, the unconfined compression strength of solidified sludge presents a linear relationship, and the change law of later strength can be predicted by early strength. 3) Degree of influence of curing agent dosage: cement dosage > gypsum dosage > dry soil dosage. The optimal mixture ratio is 8% of cement content, 30% of gypsum content (proportion of cement content), and 4 times of dry soil content (multiple of cement content).