Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,...Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,the damage and destruction of buildings urgently need to be repaired due to the ancient age of historical buildings and the influence of natural environment and human factors.Therefore,an artificial intelligence repair technology based on three-dimensional(3D)point cloud(PC)reconstruction and generative adversarial networks(GANs)was proposed to improve the precision and efficiency of repair work.First,in-depth research on the principles and algorithms of 3D PC data processing and GANs should be conducted.Second,a digital restoration frameworkwas constructed by combining these two artificial intelligence technologies to achieve precise and efficient restoration of historical buildings through continuous adversarial learning processes.The experimental results showed that the errors in the restoration of palace buildings,defense walls,pagodas,altars,temples,and mausoleums were 0.17,0.12,0.13,0.11,and 0.09,respectively.The technique can significantly reduce the error while maintaining the high-precision repair effect.This technology with artificial intelligence as the core has excellent accuracy and stability in the digital restoration.It provides a new technical means for the digital restoration of historical buildings and has important practical significance for the protection of cultural heritage.展开更多
A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D po...A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D points can be easily obtained when capturing original 3-D images. The iterative least-mean-squared (LMS) algorithm is applied to optimizing adaptively the transformation matrix parameters. These can effectively improve the registration performance and hurry up the matching process. Experimental results show that it can reach a good subjective impression on aligned 3-D images. Although the algorithm focuses primarily on the human head model, it can also be used for other objects with small modifications.展开更多
Recent exploration results indicate that a significant exploration potential remains in the Dongying Depression of the Bohai Bay Basin and the undiscovered oil and gas are largely reservoired in subtle traps including...Recent exploration results indicate that a significant exploration potential remains in the Dongying Depression of the Bohai Bay Basin and the undiscovered oil and gas are largely reservoired in subtle traps including turbidite litholigcal traps of the Sha-3 Member. In order to effectively guide the exploration program targeting turbidites, this study will focus on the depositional models of the Sha-3 Member turbidites and oil/gas accumulation characteristics in these turbidites. Two corresponding relationships were found. One is that the East African Rift Valley provides a modern analog for the depositional systems in the Dongying Depression. The other is that the depositional models of line-sourced slope aprons, single point-source submarine fan and multiple source ramp turbidite, established for deep-sea turbidites, can be applied to interpret the depositional features of the turbidite fans of three different origins: slope turbidite aprons, lake floor turbidite fans and delta-fed turbidite fans in the Sha-3 Member. Updip sealing integrity is the key factor determining whether oil/gas accumulates or not in the slope aprons and lake floor fans. The factors controlling oil/gas migration and accumulation in the delta-fed turbidite fans are not very clear. Multiple factors rather than a single factor probably played significant roles in these processes.展开更多
The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the dat...The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.展开更多
基金supported by The Social Science Foundation of Fujian Province(Grant no.FJ2021B080)The 2023 Fujian Provincial Foreign Cooperation Science and Technology Plan Project(2023I0047)+3 种基金The 2022 Longyan Industry-University-Research Joint Innovation Project(2022LYF18001)The 2023 Fujian Natural Resources Science and Tech-nology Innovation Project(KY-060000-04-2023-2002)Open Project Fund of Hunan Provincial Key Laboratory for Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area(Project No:DTH Key Lab.2023-04)The Construction Science and Technology Research and Development Project of Fujian Province,China(Grant no.2022-K-85).
文摘Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,the damage and destruction of buildings urgently need to be repaired due to the ancient age of historical buildings and the influence of natural environment and human factors.Therefore,an artificial intelligence repair technology based on three-dimensional(3D)point cloud(PC)reconstruction and generative adversarial networks(GANs)was proposed to improve the precision and efficiency of repair work.First,in-depth research on the principles and algorithms of 3D PC data processing and GANs should be conducted.Second,a digital restoration frameworkwas constructed by combining these two artificial intelligence technologies to achieve precise and efficient restoration of historical buildings through continuous adversarial learning processes.The experimental results showed that the errors in the restoration of palace buildings,defense walls,pagodas,altars,temples,and mausoleums were 0.17,0.12,0.13,0.11,and 0.09,respectively.The technique can significantly reduce the error while maintaining the high-precision repair effect.This technology with artificial intelligence as the core has excellent accuracy and stability in the digital restoration.It provides a new technical means for the digital restoration of historical buildings and has important practical significance for the protection of cultural heritage.
文摘A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D points can be easily obtained when capturing original 3-D images. The iterative least-mean-squared (LMS) algorithm is applied to optimizing adaptively the transformation matrix parameters. These can effectively improve the registration performance and hurry up the matching process. Experimental results show that it can reach a good subjective impression on aligned 3-D images. Although the algorithm focuses primarily on the human head model, it can also be used for other objects with small modifications.
文摘Recent exploration results indicate that a significant exploration potential remains in the Dongying Depression of the Bohai Bay Basin and the undiscovered oil and gas are largely reservoired in subtle traps including turbidite litholigcal traps of the Sha-3 Member. In order to effectively guide the exploration program targeting turbidites, this study will focus on the depositional models of the Sha-3 Member turbidites and oil/gas accumulation characteristics in these turbidites. Two corresponding relationships were found. One is that the East African Rift Valley provides a modern analog for the depositional systems in the Dongying Depression. The other is that the depositional models of line-sourced slope aprons, single point-source submarine fan and multiple source ramp turbidite, established for deep-sea turbidites, can be applied to interpret the depositional features of the turbidite fans of three different origins: slope turbidite aprons, lake floor turbidite fans and delta-fed turbidite fans in the Sha-3 Member. Updip sealing integrity is the key factor determining whether oil/gas accumulates or not in the slope aprons and lake floor fans. The factors controlling oil/gas migration and accumulation in the delta-fed turbidite fans are not very clear. Multiple factors rather than a single factor probably played significant roles in these processes.
基金This research is sponsored by the National Natural Science Foundation of China (No. 40374024).
文摘The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.