Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personalinformation, such as age, gender, occupation, and education, based on various linguistic features, e.g....Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personalinformation, such as age, gender, occupation, and education, based on various linguistic features, e.g., stylistic,semantic, and syntactic. The importance of AP lies in various fields, including forensics, security, medicine, andmarketing. In previous studies, many works have been done using different languages, e.g., English, Arabic, French,etc.However, the research on RomanUrdu is not up to the mark.Hence, this study focuses on detecting the author’sage and gender based on Roman Urdu text messages. The dataset used in this study is Fire’18-MaponSMS. Thisstudy proposed an ensemble model based on AdaBoostM1 and Random Forest (AMBRF) for AP using multiplelinguistic features that are stylistic, character-based, word-based, and sentence-based. The proposed model iscontrasted with several of the well-known models fromthe literature, including J48-Decision Tree (J48),Na飗e Bays(NB), K Nearest Neighbor (KNN), and Composite Hypercube on Random Projection (CHIRP), NB-Updatable,RF, and AdaboostM1. The overall outcome shows the better performance of the proposed AdaboostM1 withRandom Forest (ABMRF) with an accuracy of 54.2857% for age prediction and 71.1429% for gender predictioncalculated on stylistic features. Regarding word-based features, age and gender were considered in 50.5714% and60%, respectively. On the other hand, KNN and CHIRP show the weakest performance using all the linguisticfeatures for age and gender prediction.展开更多
混合型潮流控制器(hybrid power flow controller,HPFC)可以有效解决风电并网系统中存在的支路潮流过载问题,且相较于统一潮流控制器成本更低。针对现有的HPFC潮流优化研究尚未计及支路潮流最大值约束和风电不确定性的问题,提出一种基...混合型潮流控制器(hybrid power flow controller,HPFC)可以有效解决风电并网系统中存在的支路潮流过载问题,且相较于统一潮流控制器成本更低。针对现有的HPFC潮流优化研究尚未计及支路潮流最大值约束和风电不确定性的问题,提出一种基于场景削减的含HPFC风电并网系统最优潮流模型。首先,建立HPFC的功率注入模型,并推导了注入功率表达式;其次,采用K均值算法削减风电、负荷概率场景,通过CH(+)指标选择最优场景集合;最后,建立兼顾发电机运行成本、系统网络损耗、正常运行及N-1故障下的支路负载率的多目标优化模型,采用多目标粒子群优化(multi-objective particle swarm optimization,MOPSO)算法进行求解,利用模糊满意度函数在Pareto解集中筛选出折衷解。在MATLAB中仿真验证所提方法的有效性,结果表明该方法可以计及风电不确定性,保证电网在不同场景下的安全经济运行。展开更多
Healthcare security and privacy breaches are occurring in the United States (US), and increased substantially during the pandemic. This paper reviews the National Institute of Standards and Technology (NIST) publicati...Healthcare security and privacy breaches are occurring in the United States (US), and increased substantially during the pandemic. This paper reviews the National Institute of Standards and Technology (NIST) publication base as an effective solution. The NIST Special Publication 800-66 Revision 1 was an essential standard in US healthcare, which was withdrawn in February 2024 and superseded by SP 800-66 Revision 2. This review investigates the academic papers concerning the application of the NIST SP 800-66 Revision 1 standard in the US healthcare literature. A systematic review method was used in this study to determine current knowledge gaps of the SP 800-66 Revision 1. Some limitations were employed in the search to enforce validity. A total of eleven articles were found eligible for the study. Consequently, this study suggests the necessity for additional academic papers pertaining to SP 800-66 Revision 2 in the US healthcare literature. In turn, it will enhance awareness of safeguarding electronic protected health information (ePHI), help to mitigate potential future risks, and eventually reduce breaches.展开更多
基金the support of Prince Sultan University for the Article Processing Charges(APC)of this publication。
文摘Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personalinformation, such as age, gender, occupation, and education, based on various linguistic features, e.g., stylistic,semantic, and syntactic. The importance of AP lies in various fields, including forensics, security, medicine, andmarketing. In previous studies, many works have been done using different languages, e.g., English, Arabic, French,etc.However, the research on RomanUrdu is not up to the mark.Hence, this study focuses on detecting the author’sage and gender based on Roman Urdu text messages. The dataset used in this study is Fire’18-MaponSMS. Thisstudy proposed an ensemble model based on AdaBoostM1 and Random Forest (AMBRF) for AP using multiplelinguistic features that are stylistic, character-based, word-based, and sentence-based. The proposed model iscontrasted with several of the well-known models fromthe literature, including J48-Decision Tree (J48),Na飗e Bays(NB), K Nearest Neighbor (KNN), and Composite Hypercube on Random Projection (CHIRP), NB-Updatable,RF, and AdaboostM1. The overall outcome shows the better performance of the proposed AdaboostM1 withRandom Forest (ABMRF) with an accuracy of 54.2857% for age prediction and 71.1429% for gender predictioncalculated on stylistic features. Regarding word-based features, age and gender were considered in 50.5714% and60%, respectively. On the other hand, KNN and CHIRP show the weakest performance using all the linguisticfeatures for age and gender prediction.
文摘Healthcare security and privacy breaches are occurring in the United States (US), and increased substantially during the pandemic. This paper reviews the National Institute of Standards and Technology (NIST) publication base as an effective solution. The NIST Special Publication 800-66 Revision 1 was an essential standard in US healthcare, which was withdrawn in February 2024 and superseded by SP 800-66 Revision 2. This review investigates the academic papers concerning the application of the NIST SP 800-66 Revision 1 standard in the US healthcare literature. A systematic review method was used in this study to determine current knowledge gaps of the SP 800-66 Revision 1. Some limitations were employed in the search to enforce validity. A total of eleven articles were found eligible for the study. Consequently, this study suggests the necessity for additional academic papers pertaining to SP 800-66 Revision 2 in the US healthcare literature. In turn, it will enhance awareness of safeguarding electronic protected health information (ePHI), help to mitigate potential future risks, and eventually reduce breaches.