Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,whi...Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,which interfere with the crack detection performance.Till to the present,there still lacks efficient algorithm models and training datasets to deal with the interference brought by the shadows.To fill in the gap,we made several contributions as follows.First,we proposed a new pavement shadow and crack dataset,which contains a variety of shadow and pavement pixel size combinations.It also covers all common cracks(linear cracks and network cracks),placing higher demands on crack detection methods.Second,we designed a two-step shadow-removal-oriented crack detection approach:SROCD,which improves the performance of the algorithm by first removing the shadow and then detecting it.In addition to shadows,the method can cope with other noise disturbances.Third,we explored the mechanism of how shadows affect crack detection.Based on this mechanism,we propose a data augmentation method based on the difference in brightness values,which can adapt to brightness changes caused by seasonal and weather changes.Finally,we introduced a residual feature augmentation algorithm to detect small cracks that can predict sudden disasters,and the algorithm improves the performance of the model overall.We compare our method with the state-of-the-art methods on existing pavement crack datasets and the shadow-crack dataset,and the experimental results demonstrate the superiority of our method.展开更多
Strong low-frequency energy beneath a hydrocarbon reservoir is called a seismic low-frequency shadow and can be used as a hydrocarbon indicator (Tarter et al., 1979) bu the physical mechanism of the observed low-fre...Strong low-frequency energy beneath a hydrocarbon reservoir is called a seismic low-frequency shadow and can be used as a hydrocarbon indicator (Tarter et al., 1979) bu the physical mechanism of the observed low-frequency shadow is still unclear. To stud) the mechanism, we performed seismic numerical simulation of geological models with a hydrocarbon-bearing zone using the 2-D diffusive-viscous wave equation which car effectively model the characteristics of velocity dispersion and transform the seismic dat~ centered in a target layer slice within a time window to the time-frequency domain by usinl time-frequency signal analysis and sort the frequency gathers to common frequency cubes. Then, we observe the characteristics of the seismic low-frequency shadow in the common frequency cubes. The numerical simulations reveal that the main mechanism of seismic lowfrequency shadows is attributed to high attenuation of the medium to high seismic frequency components caused by absorption in the hydrocarbon-filled reservoir. Results from a practical example of seismic low-frequency shadows show that it is possible to identify the reservoir by the low-frequency shadow with high S/N seismic data.展开更多
Using China’s county-level panel data of 2007-2016,this paper verifies the existence of agglomeration shadows from an infrastructure development perspective.With high-speed railway(HSR)launch as a quasi-natural exper...Using China’s county-level panel data of 2007-2016,this paper verifies the existence of agglomeration shadows from an infrastructure development perspective.With high-speed railway(HSR)launch as a quasi-natural experiment,we find that the launch of HSR lines was followed by a decrease in GDP per capita of counties along the route by 2.6 percentage points.This conclusion remains valid after a series of robustness tests and the treatment of potential endogeneity problem.Mechanism analysis suggests that such effect is the most significant for counties within a distance of 97 to 195 km to the nearest central city,which is a manifestation of the“agglomeration shadows.”We also uncover that HSR would spur economic growth for counties with favorable endowments.However,HSR also has a significant negative impact on permanent population in counties.When change in permanent population is taken into account,HSR’s negative impact on the countywide economy becomes smaller.Shrinking permanent population in counties after HSR launch is a manifestation of such agglomeration shadows.HSR has facilitated the free flow of population.These findings point to the possibility that HSR may have induced regional economic equilibrium amid agglomeration.展开更多
Different from sculling forward of water striders with their hairy water-repellent legs, water spiders walked very quickly on water surfaces. By using a shadow method, the walking of water spiders had been studied. Th...Different from sculling forward of water striders with their hairy water-repellent legs, water spiders walked very quickly on water surfaces. By using a shadow method, the walking of water spiders had been studied. The three-dimensional trajectories and the supporting forces of water spider legs during walking forward were achieved. Results showed that the leg movement could be divided into three phases: slap, stroke, and retrieve. Employing an effective strategy to improving walking efficiency, the sculling legs supported most of its body weight while other legs were lifted to reduce the lateral water resistance, which was similar to the strategy of water striders. These findings could help guiding the design of water walking robots with high efficiency.展开更多
In case of complex textures,existing static shadow detection and removal algorithms are prone to false detection of the pixels.To solve this problem,a static shadow detection and removal algorithm based on support vec...In case of complex textures,existing static shadow detection and removal algorithms are prone to false detection of the pixels.To solve this problem,a static shadow detection and removal algorithm based on support vector machine(SVM)and region sub-block matching is proposed.Firstly,the original image is segmented into several superpixels,and these superpixels are clustered using mean-shift clustering algorithm in the superpixel sets.Secondly,these features such as color,texture,brightness,intensity and similarity of each area are extracted.These features are used as input of SVM to obtain shadow binary images through training in non-operational state.Thirdly,soft matting is used to smooth the boundary of shadow binary graph.Finally,after finding the best matching sub-block for shadow sub-block in the illumination region based on regional covariance feature and spatial distance,the shadow weighted average factor is introduced to partially correct the sub-block,and the light recovery operator is used to partially light the sub-block.The experimental results show the number of false detection of the pixels is reduced.In addition,it can remove shadows effectively for the image with rich textures and uneven shadows and make a natural transition at the boundary between shadow and light.展开更多
In general,topographic shadow may reduce performance of forest mapping over mountainous regions in remotely sensed images.In this paper,information in shadow was synthesized by using two filling techniques,namely,roif...In general,topographic shadow may reduce performance of forest mapping over mountainous regions in remotely sensed images.In this paper,information in shadow was synthesized by using two filling techniques,namely,roifill and imfill,in order to improve the accuracy of forest mapping over mountainous regions.These two methods were applied to Landsat Enhanced Thematic Mapper (ETM +) multispectral image from Dong Yang County,Zhejiang Province,China.The performance of these methods was compared with two conventional techniques,including cosine correction and multisource classification.The results showed that by applying filling approaches,average overall accuracy of classification was improved by 14 percent.However,through conventional methods this value increased only by 9 percent.The results also revealed that estimated forest area on the basis of shadow-corrected images by 'roifill' technique was much closer to the survey data compared to traditional algorithms.Apart from this finding,our finding indicated that topographic shadow was an accentuated problem in medium resolution images such as Landsat ETM+ over mountainous regions.展开更多
The main reservoirs in different fields in the YP oil region of the eastern Pearl River Estuary Basin are all fault-locked reservoirs.A large amount of seismic data in this area has fault-influenced distortion imaging...The main reservoirs in different fields in the YP oil region of the eastern Pearl River Estuary Basin are all fault-locked reservoirs.A large amount of seismic data in this area has fault-influenced distortion imaging zones,which poses a challenge to the tectonic evaluation of the area.Traditional solutions to fault shadows generally use reacquisition of multi-directional seismic data or targeted processing for fault imaging,which involves the acquisition of high cost and long processing cycle.In this paper,we propose to quantitatively depict the shadow zone range of faults using 3D stratigraphic dip attributes,and then combine it with the lateral distribution of marine stratigraphy features in the YP oil region,we introduced a support vector regression algorithm to calculate a high-precision nonlinear tectonic trend surface in the area.Under the constraint of this trend surface,we completed the prediction of distortion area structure of the fault shadow zone.The theoretical model test calculations and the production application of an oil field in the YP oil region show that the method has a great potential for application.展开更多
Fince the release of Nang Nak in 1999,Thai movies involving the supernatural have left a mark on world cinema with strong ethnic flavors and Buddhist undertones.Their appeal is grounded in the prevalence of Buddhism i...Fince the release of Nang Nak in 1999,Thai movies involving the supernatural have left a mark on world cinema with strong ethnic flavors and Buddhist undertones.Their appeal is grounded in the prevalence of Buddhism in the Southeast Asian country,where more than 90 percent of the population practice Theravada Buddhism.Ghosts also constitute a key element of Thai culture.Gods and ghosts,the two seemingly irreconcilable beings。展开更多
We investigate the impact of the modified gravity(MOG)field and the quintessence scalar field on horizon evolution,black hole(BH)shadow and the weak gravitational lensing around a static spherically symmetric BH.We fi...We investigate the impact of the modified gravity(MOG)field and the quintessence scalar field on horizon evolution,black hole(BH)shadow and the weak gravitational lensing around a static spherically symmetric BH.We first begin to write the BH metric associated with the MOG parameter and quintessence scalar field.We then determine the BH shadow and obtain numerical solutions for the photon sphere and shadow radius.We show that the MOG(α)and the quintessence(c)parameters have a significant impact on the BH shadow and photon sphere.Based on the analysis,we further show that the combined effects of the MOG parameter and quintessence field can increase the values of BH shadow and photon sphere radii.We also obtain constraints on the BH parameters by applying the observational data of Sgr A^(★)and M87^(★).Finally,we consider the weak deflection angle of BH within the context of the Gauss-Bonnet theorem(GBT)and show that the combined effects of the MOG and quintessence parameters do make the value of the deflection angle increase,and find this remarkable property is in good agreement with the physical meaning of both parameters that can maintain the strong gravitational field in the surrounding environment of a BH.展开更多
Gravity models given by higher-order scalar curvature corrections are believed to bear important consequences. Einstein-Bel-Robinson (EBR) gravity with quartic curvature modification motivated Sajadi et al. to explore...Gravity models given by higher-order scalar curvature corrections are believed to bear important consequences. Einstein-Bel-Robinson (EBR) gravity with quartic curvature modification motivated Sajadi et al. to explore static spherically symmetric black hole solutions using perturbative methods. In this study, inspired by their work, we investigate AdS black hole shadows in EBR gravity and demonstrate how the gravity parameter alters the energy emission rate. Finally, we address the same problem in the presence of plasma, because the black holes are thought to be surrounded by a medium that changes the geodesic of photons.展开更多
In this study,we investigated the optical properties of charged black holes within the Einstein-Maxwellscalar(EMS)theory.We evaluated the shadow cast by these black holes and obtained analytical solutions for both the...In this study,we investigated the optical properties of charged black holes within the Einstein-Maxwellscalar(EMS)theory.We evaluated the shadow cast by these black holes and obtained analytical solutions for both the radius of the photon sphere and that of the shadow.We observed that black hole parametersγandβboth influence the shadow of black holes.We also found that the photon sphere and shadow radius increase as a consequence of the presence of the parameterγ.Interestingly,the shadow radius decreases first and then remains unchanged owing to the impact of the parameterβ.Finally,we analyzed the weak gravitational lensing and total magnification of lensed images around black holes.We found that the charge of the black holes and the parameterβboth have a significant impact,reducing the deflection angle.Similarly,the same behavior for the total magnification was observed,also as a result of the effect of the charge of the black holes and the parameterβ.展开更多
Accompanied by music,a humorous story unfolds as a turtle and a crane engage in playful antics,brought to life through the clever interplay of light and curtain in a Chinese shadow puppetry performance.The audience ap...Accompanied by music,a humorous story unfolds as a turtle and a crane engage in playful antics,brought to life through the clever interplay of light and curtain in a Chinese shadow puppetry performance.The audience appears very much entertained,with bursts of laughter echoing throughout the shenanigans unfolding on stage.展开更多
In this study,we investigate the effect of nonlinear electrodynamics on the shadows of charged,slowly rotating black holes with the presence of a cosmological constant.Rather than the null geodesic of the background b...In this study,we investigate the effect of nonlinear electrodynamics on the shadows of charged,slowly rotating black holes with the presence of a cosmological constant.Rather than the null geodesic of the background black hole spacetime,the trajectory of a photon,as a perturbation of the nonlinear electrodynamic field,is governed by an effective metric.The latter can be derived by analyzing the propagation of a discontinuity of the electromagnetic waveform.Subsequently,the image of the black hole and its shadow can be evaluated using the backward raytracing technique.We explore the properties of the resultant black hole shadows of two different scenarios of nonlinear electrodynamics,namely,the logarithmic and exponential forms.In particular,the effects of nonlinear electrodynamics on the optical image are investigated,as well as the image s dependence on other metric parameters,such as the black hole spin and charge.The resulting black hole image and shadow display rich features that potentially lead to observational implic ations.展开更多
Tension in the South China Sea has recently flared up again.On August 5,two Philippine supply ships,one carrying construction materials,attempted to reinforce and repair the Philippine Navy transport ship BRP Sierra M...Tension in the South China Sea has recently flared up again.On August 5,two Philippine supply ships,one carrying construction materials,attempted to reinforce and repair the Philippine Navy transport ship BRP Sierra Madre,a rusting vessel that was deliberately stranded on China’s Ren’ai Jiao in 1999.The Chinese side was made to respond to this provocative move,and China Coast Guard took warning measures in accordance with the law.展开更多
In religious and philosophical traditions around the world,the images of key figures inevitably change and develop with changes in the societies and groups in which they persist,giving rise to debates and disputes tha...In religious and philosophical traditions around the world,the images of key figures inevitably change and develop with changes in the societies and groups in which they persist,giving rise to debates and disputes that often concern central questions of authority over the interpretation of texts and doctrines,and the central figures of Chinese traditions such as Confucius孔子and Laozi老子are no exception.展开更多
Aiming at the problem of shadow interference in UAV's ground reconnaissance,a color and polarization synergistic target detection method is proposed for anti-shadow interference,based on the influence of two physi...Aiming at the problem of shadow interference in UAV's ground reconnaissance,a color and polarization synergistic target detection method is proposed for anti-shadow interference,based on the influence of two physical characteristics(wavelength and polarization)under different illuminations.A valid fusion strategy is proposed via integrating two separate detection results on color and polarization images.Moreover,a local enhancement and recognition module(LER)is introduced to boost the performance.Based on our built dataset,experimental results show that our method achieves mAPof 87.76%,and12.37%higher than that of color image and 14.68%higher than that of polarization image.展开更多
We examine thermodynamic phase transition(PT)of the charged Gauss-Bonnet Ad S black hole(BH)by utilizing the shadow radius.In this system,we rescale the corresponding Gauss-Bonnet coefficientαby a factor of 1/(D-4),a...We examine thermodynamic phase transition(PT)of the charged Gauss-Bonnet Ad S black hole(BH)by utilizing the shadow radius.In this system,we rescale the corresponding Gauss-Bonnet coefficientαby a factor of 1/(D-4),and ensure thatαis positive to avoid any singularity problems.The equation derived for the shadow radius indicates that it increases as the event horizon radius increases,making it an independent variable for determining BH temperature.By investigating the PT curve in relation to shadows,we can observe that the shadow radius can be used as an alternative to the event horizon radius in explaining the phenomenon of BH PT.Furthermore,the results indicate that an increase in the parameterαcorresponds to a decrease in the temperature of the BH.By utilizing the relationship between the temperature and the shadow radius,it is possible to obtain the thermal profile of the Gauss-Bonnet AdS BH.It is evident that there is an N-type variation in temperature for pressures P<P_(c).Additionally,as the parameterαincreases,the region covered by shadow expands while the temperature decreases.The utilization of BH shadows as a probe holds immense significance in gaining a deeper understanding of BH thermodynamic behavior.展开更多
Chinese shadow puppetry has been recognized as a world intangible cultural heritage.However,it faces substantial challenges in its preservation and advancement due to the intricate and labor-intensive nature of crafti...Chinese shadow puppetry has been recognized as a world intangible cultural heritage.However,it faces substantial challenges in its preservation and advancement due to the intricate and labor-intensive nature of crafting shadow puppets.To ensure the inheritance and development of this cultural heritage,it is imperative to enable traditional art to flourish in the digital era.This paper presents an Interactive Collaborative Creation System for shadow puppets,designed to facilitate the creation of high-quality shadow puppet images with greater ease.The system comprises four key functions:Image contour extraction,intelligent reference recommendation,generation network,and color adjustment,all aimed at assisting users in various aspects of the creative process,including drawing,inspiration,and content generation.Additionally,we propose an enhanced algorithm called Smooth Generative Adversarial Networks(SmoothGAN),which exhibits more stable gradient training and a greater capacity for generating high-resolution shadow puppet images.Furthermore,we have built a new dataset comprising high-quality shadow puppet images to train the shadow puppet generation model.Both qualitative and quantitative experimental results demonstrate that SmoothGAN significantly improves the quality of image generation,while our system efficiently assists users in creating high-quality shadow puppet images,with a SUS scale score of 84.4.This study provides a valuable theoretical and practical reference for the digital creation of shadow puppet art.展开更多
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ...A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.展开更多
We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path l...We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path loss,Rayleigh fading and log-normal shadowing.For a data packet transmission,we formulate an optimization problem,solve the problem,and propose a rate and transmission power adaptation scheme with a restriction methodology of data packet transmission for achieving the optimal energy efficiency.In the restriction methodology of data packet transmission,a user does not transmit a data packet if the instantaneous channel gain of the user is lower than a threshold.To evaluate the performance of the proposed scheme,we develop analytical models for computing the throughput and energy efficiency of WLANs under the proposed scheme considering a saturation traffic condition.We then validate the analytical models via simulation.We find that the proposed scheme provides better throughput and energy efficiency with acceptable throughput fairness if the restriction methodology of data packet transmission is included.By means of the analytical models and simulations,we demonstrate that the proposed scheme provides significantly higher throughput,energy efficiency and fairness index than a traditional non-adaptive scheme and an existing most relevant adaptive scheme.Throughput and energy efficiency gains obtained by the proposed scheme with respect to the existing adapting scheme are about 75%and 103%,respectively,for a fairness index of 0.8.We also study the effect of various system parameters on throughput and energy efficiency and provide various engineering insights.展开更多
基金supported in part by the 14th Five-Year Project of Ministry of Science and Technology of China(2021YFD2000304)Fundamental Research Funds for the Central Universities(531118010509)Natural Science Foundation of Hunan Province,China(2021JJ40114)。
文摘Automatic pavement crack detection is a critical task for maintaining the pavement stability and driving safety.The task is challenging because the shadows on the pavement may have similar intensity with the crack,which interfere with the crack detection performance.Till to the present,there still lacks efficient algorithm models and training datasets to deal with the interference brought by the shadows.To fill in the gap,we made several contributions as follows.First,we proposed a new pavement shadow and crack dataset,which contains a variety of shadow and pavement pixel size combinations.It also covers all common cracks(linear cracks and network cracks),placing higher demands on crack detection methods.Second,we designed a two-step shadow-removal-oriented crack detection approach:SROCD,which improves the performance of the algorithm by first removing the shadow and then detecting it.In addition to shadows,the method can cope with other noise disturbances.Third,we explored the mechanism of how shadows affect crack detection.Based on this mechanism,we propose a data augmentation method based on the difference in brightness values,which can adapt to brightness changes caused by seasonal and weather changes.Finally,we introduced a residual feature augmentation algorithm to detect small cracks that can predict sudden disasters,and the algorithm improves the performance of the model overall.We compare our method with the state-of-the-art methods on existing pavement crack datasets and the shadow-crack dataset,and the experimental results demonstrate the superiority of our method.
基金supported by the National Hi-tech Research and Development Program of China (863 Program) (Grant No. 2006AA0AA 02 - 2).
文摘Strong low-frequency energy beneath a hydrocarbon reservoir is called a seismic low-frequency shadow and can be used as a hydrocarbon indicator (Tarter et al., 1979) bu the physical mechanism of the observed low-frequency shadow is still unclear. To stud) the mechanism, we performed seismic numerical simulation of geological models with a hydrocarbon-bearing zone using the 2-D diffusive-viscous wave equation which car effectively model the characteristics of velocity dispersion and transform the seismic dat~ centered in a target layer slice within a time window to the time-frequency domain by usinl time-frequency signal analysis and sort the frequency gathers to common frequency cubes. Then, we observe the characteristics of the seismic low-frequency shadow in the common frequency cubes. The numerical simulations reveal that the main mechanism of seismic lowfrequency shadows is attributed to high attenuation of the medium to high seismic frequency components caused by absorption in the hydrocarbon-filled reservoir. Results from a practical example of seismic low-frequency shadows show that it is possible to identify the reservoir by the low-frequency shadow with high S/N seismic data.
文摘Using China’s county-level panel data of 2007-2016,this paper verifies the existence of agglomeration shadows from an infrastructure development perspective.With high-speed railway(HSR)launch as a quasi-natural experiment,we find that the launch of HSR lines was followed by a decrease in GDP per capita of counties along the route by 2.6 percentage points.This conclusion remains valid after a series of robustness tests and the treatment of potential endogeneity problem.Mechanism analysis suggests that such effect is the most significant for counties within a distance of 97 to 195 km to the nearest central city,which is a manifestation of the“agglomeration shadows.”We also uncover that HSR would spur economic growth for counties with favorable endowments.However,HSR also has a significant negative impact on permanent population in counties.When change in permanent population is taken into account,HSR’s negative impact on the countywide economy becomes smaller.Shrinking permanent population in counties after HSR launch is a manifestation of such agglomeration shadows.HSR has facilitated the free flow of population.These findings point to the possibility that HSR may have induced regional economic equilibrium amid agglomeration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51323006 and 51425502)the Tribology Science Fund of State Key Laboratory of Tribology(Grant No.SKLTKF17B18)
文摘Different from sculling forward of water striders with their hairy water-repellent legs, water spiders walked very quickly on water surfaces. By using a shadow method, the walking of water spiders had been studied. The three-dimensional trajectories and the supporting forces of water spider legs during walking forward were achieved. Results showed that the leg movement could be divided into three phases: slap, stroke, and retrieve. Employing an effective strategy to improving walking efficiency, the sculling legs supported most of its body weight while other legs were lifted to reduce the lateral water resistance, which was similar to the strategy of water striders. These findings could help guiding the design of water walking robots with high efficiency.
基金University and College Scientific Research Fund of Gansu Province(No.2017A-026)Foundation of A hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘In case of complex textures,existing static shadow detection and removal algorithms are prone to false detection of the pixels.To solve this problem,a static shadow detection and removal algorithm based on support vector machine(SVM)and region sub-block matching is proposed.Firstly,the original image is segmented into several superpixels,and these superpixels are clustered using mean-shift clustering algorithm in the superpixel sets.Secondly,these features such as color,texture,brightness,intensity and similarity of each area are extracted.These features are used as input of SVM to obtain shadow binary images through training in non-operational state.Thirdly,soft matting is used to smooth the boundary of shadow binary graph.Finally,after finding the best matching sub-block for shadow sub-block in the illumination region based on regional covariance feature and spatial distance,the shadow weighted average factor is introduced to partially correct the sub-block,and the light recovery operator is used to partially light the sub-block.The experimental results show the number of false detection of the pixels is reduced.In addition,it can remove shadows effectively for the image with rich textures and uneven shadows and make a natural transition at the boundary between shadow and light.
基金supported by the funding from National Natural Science Foundation of China(Grant No 30671212)partially by NASA projects NNX08AH50G and G05GD49G at Michigan State University
文摘In general,topographic shadow may reduce performance of forest mapping over mountainous regions in remotely sensed images.In this paper,information in shadow was synthesized by using two filling techniques,namely,roifill and imfill,in order to improve the accuracy of forest mapping over mountainous regions.These two methods were applied to Landsat Enhanced Thematic Mapper (ETM +) multispectral image from Dong Yang County,Zhejiang Province,China.The performance of these methods was compared with two conventional techniques,including cosine correction and multisource classification.The results showed that by applying filling approaches,average overall accuracy of classification was improved by 14 percent.However,through conventional methods this value increased only by 9 percent.The results also revealed that estimated forest area on the basis of shadow-corrected images by 'roifill' technique was much closer to the survey data compared to traditional algorithms.Apart from this finding,our finding indicated that topographic shadow was an accentuated problem in medium resolution images such as Landsat ETM+ over mountainous regions.
基金This study was financially supported by the National Natural Science Foundation of China(Grant No.42104131,41774142)Open Fund(PLC20211101)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology).
文摘The main reservoirs in different fields in the YP oil region of the eastern Pearl River Estuary Basin are all fault-locked reservoirs.A large amount of seismic data in this area has fault-influenced distortion imaging zones,which poses a challenge to the tectonic evaluation of the area.Traditional solutions to fault shadows generally use reacquisition of multi-directional seismic data or targeted processing for fault imaging,which involves the acquisition of high cost and long processing cycle.In this paper,we propose to quantitatively depict the shadow zone range of faults using 3D stratigraphic dip attributes,and then combine it with the lateral distribution of marine stratigraphy features in the YP oil region,we introduced a support vector regression algorithm to calculate a high-precision nonlinear tectonic trend surface in the area.Under the constraint of this trend surface,we completed the prediction of distortion area structure of the fault shadow zone.The theoretical model test calculations and the production application of an oil field in the YP oil region show that the method has a great potential for application.
文摘Fince the release of Nang Nak in 1999,Thai movies involving the supernatural have left a mark on world cinema with strong ethnic flavors and Buddhist undertones.Their appeal is grounded in the prevalence of Buddhism in the Southeast Asian country,where more than 90 percent of the population practice Theravada Buddhism.Ghosts also constitute a key element of Thai culture.Gods and ghosts,the two seemingly irreconcilable beings。
基金supported by the National Natural Science Foundation of China under Grant No. 11675143the National Key Research and Development Program of China under Grant No. 2020YFC2201503the support from Research Grant F-FA-2021-432 of the Ministry of Higher Education, Science and Innovations of the Republic of Uzbekistan。
文摘We investigate the impact of the modified gravity(MOG)field and the quintessence scalar field on horizon evolution,black hole(BH)shadow and the weak gravitational lensing around a static spherically symmetric BH.We first begin to write the BH metric associated with the MOG parameter and quintessence scalar field.We then determine the BH shadow and obtain numerical solutions for the photon sphere and shadow radius.We show that the MOG(α)and the quintessence(c)parameters have a significant impact on the BH shadow and photon sphere.Based on the analysis,we further show that the combined effects of the MOG parameter and quintessence field can increase the values of BH shadow and photon sphere radii.We also obtain constraints on the BH parameters by applying the observational data of Sgr A^(★)and M87^(★).Finally,we consider the weak deflection angle of BH within the context of the Gauss-Bonnet theorem(GBT)and show that the combined effects of the MOG and quintessence parameters do make the value of the deflection angle increase,and find this remarkable property is in good agreement with the physical meaning of both parameters that can maintain the strong gravitational field in the surrounding environment of a BH.
基金Supported by the Internal Project(2023/2211)of Excellent Research of the Faculty of Science of Hradec Kralove University。
文摘Gravity models given by higher-order scalar curvature corrections are believed to bear important consequences. Einstein-Bel-Robinson (EBR) gravity with quartic curvature modification motivated Sajadi et al. to explore static spherically symmetric black hole solutions using perturbative methods. In this study, inspired by their work, we investigate AdS black hole shadows in EBR gravity and demonstrate how the gravity parameter alters the energy emission rate. Finally, we address the same problem in the presence of plasma, because the black holes are thought to be surrounded by a medium that changes the geodesic of photons.
基金Supported by the National Natural Science Foundation of China(11675143)the National Key Research and Development Program of China(2020YFC2201503)the support from Research Grant F-FA-2021-432 of the Ministry of Higher Education,Science and Innovations of the Republic of Uzbekistan。
文摘In this study,we investigated the optical properties of charged black holes within the Einstein-Maxwellscalar(EMS)theory.We evaluated the shadow cast by these black holes and obtained analytical solutions for both the radius of the photon sphere and that of the shadow.We observed that black hole parametersγandβboth influence the shadow of black holes.We also found that the photon sphere and shadow radius increase as a consequence of the presence of the parameterγ.Interestingly,the shadow radius decreases first and then remains unchanged owing to the impact of the parameterβ.Finally,we analyzed the weak gravitational lensing and total magnification of lensed images around black holes.We found that the charge of the black holes and the parameterβboth have a significant impact,reducing the deflection angle.Similarly,the same behavior for the total magnification was observed,also as a result of the effect of the charge of the black holes and the parameterβ.
文摘Accompanied by music,a humorous story unfolds as a turtle and a crane engage in playful antics,brought to life through the clever interplay of light and curtain in a Chinese shadow puppetry performance.The audience appears very much entertained,with bursts of laughter echoing throughout the shenanigans unfolding on stage.
基金Supported by the National Key R&D Program of China(2020YFC2201400)。
文摘In this study,we investigate the effect of nonlinear electrodynamics on the shadows of charged,slowly rotating black holes with the presence of a cosmological constant.Rather than the null geodesic of the background black hole spacetime,the trajectory of a photon,as a perturbation of the nonlinear electrodynamic field,is governed by an effective metric.The latter can be derived by analyzing the propagation of a discontinuity of the electromagnetic waveform.Subsequently,the image of the black hole and its shadow can be evaluated using the backward raytracing technique.We explore the properties of the resultant black hole shadows of two different scenarios of nonlinear electrodynamics,namely,the logarithmic and exponential forms.In particular,the effects of nonlinear electrodynamics on the optical image are investigated,as well as the image s dependence on other metric parameters,such as the black hole spin and charge.The resulting black hole image and shadow display rich features that potentially lead to observational implic ations.
文摘Tension in the South China Sea has recently flared up again.On August 5,two Philippine supply ships,one carrying construction materials,attempted to reinforce and repair the Philippine Navy transport ship BRP Sierra Madre,a rusting vessel that was deliberately stranded on China’s Ren’ai Jiao in 1999.The Chinese side was made to respond to this provocative move,and China Coast Guard took warning measures in accordance with the law.
文摘In religious and philosophical traditions around the world,the images of key figures inevitably change and develop with changes in the societies and groups in which they persist,giving rise to debates and disputes that often concern central questions of authority over the interpretation of texts and doctrines,and the central figures of Chinese traditions such as Confucius孔子and Laozi老子are no exception.
基金supported by the Key Research and Development Program of the Key R&D Project in Shaanxi Province (Grant No.2021GXLH-01-20)the Open Fund Project of Key Laboratory of Opto-electronic Information Processing,Chinese Academy of Sciences (Grant No.OEIP-O-202001)+2 种基金the China Industry-universityresearch Innovation Fund (Grant No.2021ITA10006)the National Natural Science Foundation of China (Grant No.62105372)Project Pogram of Science and Technology on Micro-system Laboratory (Grant No.6142804231001)。
文摘Aiming at the problem of shadow interference in UAV's ground reconnaissance,a color and polarization synergistic target detection method is proposed for anti-shadow interference,based on the influence of two physical characteristics(wavelength and polarization)under different illuminations.A valid fusion strategy is proposed via integrating two separate detection results on color and polarization images.Moreover,a local enhancement and recognition module(LER)is introduced to boost the performance.Based on our built dataset,experimental results show that our method achieves mAPof 87.76%,and12.37%higher than that of color image and 14.68%higher than that of polarization image.
基金Project supported by the National Natural Science Foundation of China (Grant No.11903025)the starting fund of China West Normal University (Grant No.18Q062)+2 种基金the Sichuan Youth Science and Technology Innovation Research Team (Grant No.21CXTD0038)the Chongqing Science and Technology Bureau (Grant No.cstc2022ycjh-bgzxm0161)the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1833)。
文摘We examine thermodynamic phase transition(PT)of the charged Gauss-Bonnet Ad S black hole(BH)by utilizing the shadow radius.In this system,we rescale the corresponding Gauss-Bonnet coefficientαby a factor of 1/(D-4),and ensure thatαis positive to avoid any singularity problems.The equation derived for the shadow radius indicates that it increases as the event horizon radius increases,making it an independent variable for determining BH temperature.By investigating the PT curve in relation to shadows,we can observe that the shadow radius can be used as an alternative to the event horizon radius in explaining the phenomenon of BH PT.Furthermore,the results indicate that an increase in the parameterαcorresponds to a decrease in the temperature of the BH.By utilizing the relationship between the temperature and the shadow radius,it is possible to obtain the thermal profile of the Gauss-Bonnet AdS BH.It is evident that there is an N-type variation in temperature for pressures P<P_(c).Additionally,as the parameterαincreases,the region covered by shadow expands while the temperature decreases.The utilization of BH shadows as a probe holds immense significance in gaining a deeper understanding of BH thermodynamic behavior.
基金supported by the Scientific Research Foundation of Hangzhou City University under Grant No.X-202203the Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGY24F030002.
文摘Chinese shadow puppetry has been recognized as a world intangible cultural heritage.However,it faces substantial challenges in its preservation and advancement due to the intricate and labor-intensive nature of crafting shadow puppets.To ensure the inheritance and development of this cultural heritage,it is imperative to enable traditional art to flourish in the digital era.This paper presents an Interactive Collaborative Creation System for shadow puppets,designed to facilitate the creation of high-quality shadow puppet images with greater ease.The system comprises four key functions:Image contour extraction,intelligent reference recommendation,generation network,and color adjustment,all aimed at assisting users in various aspects of the creative process,including drawing,inspiration,and content generation.Additionally,we propose an enhanced algorithm called Smooth Generative Adversarial Networks(SmoothGAN),which exhibits more stable gradient training and a greater capacity for generating high-resolution shadow puppet images.Furthermore,we have built a new dataset comprising high-quality shadow puppet images to train the shadow puppet generation model.Both qualitative and quantitative experimental results demonstrate that SmoothGAN significantly improves the quality of image generation,while our system efficiently assists users in creating high-quality shadow puppet images,with a SUS scale score of 84.4.This study provides a valuable theoretical and practical reference for the digital creation of shadow puppet art.
基金supported by the National Natural Science Foundation of China(Grant No.52078010)Beijing Natural Science Foundation(Grant No.JQ19029).
文摘A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.
文摘We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path loss,Rayleigh fading and log-normal shadowing.For a data packet transmission,we formulate an optimization problem,solve the problem,and propose a rate and transmission power adaptation scheme with a restriction methodology of data packet transmission for achieving the optimal energy efficiency.In the restriction methodology of data packet transmission,a user does not transmit a data packet if the instantaneous channel gain of the user is lower than a threshold.To evaluate the performance of the proposed scheme,we develop analytical models for computing the throughput and energy efficiency of WLANs under the proposed scheme considering a saturation traffic condition.We then validate the analytical models via simulation.We find that the proposed scheme provides better throughput and energy efficiency with acceptable throughput fairness if the restriction methodology of data packet transmission is included.By means of the analytical models and simulations,we demonstrate that the proposed scheme provides significantly higher throughput,energy efficiency and fairness index than a traditional non-adaptive scheme and an existing most relevant adaptive scheme.Throughput and energy efficiency gains obtained by the proposed scheme with respect to the existing adapting scheme are about 75%and 103%,respectively,for a fairness index of 0.8.We also study the effect of various system parameters on throughput and energy efficiency and provide various engineering insights.