期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于H2O平台自动化机器学习的糖尿病视网膜病变预测模型的建立
1
作者 王慧霞 张玉婷 朱曼辉 《医学信息》 2023年第22期8-13,共6页
目的利用H2O平台推出的自动化机器学习(AutoML)算法,建立预测糖尿病(DM)视网膜病变(DR)模型。方法纳入2019年1月-2021年1月于本院就诊的606例DM患者,根据眼底照相分为单纯DM组(DM组,303例)及DM合并DR组(DR组,303例)。采集两组患者基本... 目的利用H2O平台推出的自动化机器学习(AutoML)算法,建立预测糖尿病(DM)视网膜病变(DR)模型。方法纳入2019年1月-2021年1月于本院就诊的606例DM患者,根据眼底照相分为单纯DM组(DM组,303例)及DM合并DR组(DR组,303例)。采集两组患者基本情况、血生化检测结果及视网膜图像等数据。利用H2O AutoML算法建立针对DR二分类结局,进行变量筛选并建立机器学习预测模型,产生相应预测结果,据此绘制ROC曲线并建立混淆矩阵,绘制SHAP及部分依赖图,评价模型区分能力。结果DR组糖尿病病程长于DM组,吸烟、饮酒、高血压、脂肪肝比例、腰臀比、BMI及收缩压高于DM组,差异有统计学意义(P<0.05);DR组HDL-C低于DM组,FPG、FINS、HOMA-IR、HbA1c、ALT和AST均高于DM组,差异有统计学意义(P<0.05)。将两组特征数据载入AutoML工作环境中,得到最佳模型为通用梯度回归模型(GBM),该模型Gini值0.914,R2为0.679,LogLoss为0.260。重要性排名前3的变量包括FPG、糖尿病病程及FINS。在Train数据集中,ROC曲线下面积为0.942(95%CI:0.921~0.963)。利用混淆矩阵得到特异度为0.924,敏感度为0.959,准确度为0.942,误分类率为0.058。在Valid数据集中,ROC曲线下面积为0.831(95%CI:0.764~0.897)。利用混淆矩阵得到特异度为0.828,敏感度为0.833,准确度为0.831,误分类率为0.169。结论本次利用AutoML算法建立的通用梯度回归DR患病预测模型可用于DM人群中DR的筛查。 展开更多
关键词 糖尿病视网膜病变 自动机器学习 预测模型 混淆矩阵 shap可视化 部分依赖图
下载PDF
自动化机器学习在剖宫产术后尿潴留预测模型中的应用
2
作者 王芳 胡星 +1 位作者 朱锦舟 崔欢欢 《医学信息》 2023年第5期41-45,共5页
目的利用自动化机器学习方法,建立剖宫产术后尿潴留预测模型。方法选取我院2018年1月-2022年1月手术室220例行剖宫产住院产妇,根据是否发生术后尿潴留结局分为尿潴留组(38例)和无尿潴留组(182例)。比较两组生育史及术中术后临床资料,利... 目的利用自动化机器学习方法,建立剖宫产术后尿潴留预测模型。方法选取我院2018年1月-2022年1月手术室220例行剖宫产住院产妇,根据是否发生术后尿潴留结局分为尿潴留组(38例)和无尿潴留组(182例)。比较两组生育史及术中术后临床资料,利用H_(2)O平台自动化机器学习框架,建立针对术后尿潴留结局的预测模型,通过绘制ROC曲线,计算曲线下面积(AUC)以评价模型的预测能力,并对模型特征进行可视化呈现。结果两组疼痛评分、孕前BMI、产次、剖宫产史、胎儿体重、麻醉时间、手术时间、麻醉方式、尿管拔除时间及焦虑情况比较,差异有统计学意义(P<0.05);最佳模型为梯度提升机模型(GBM),Gini值0.987,R^(2)为0.653,LogLoss为0.168;模型中重要变量包括疼痛评分、焦虑、麻醉时间、产次、麻醉方式、拔尿管时间及孕前BMI;变量SHAP特征图呈现了变量与模型整体预测的相关性,LIME反映在具体案例中变量的角色;GBM模型的ROC下面积为0.909(95%CI:0.880~0.939),准确度0.947,特异度为0.962,敏感度0.856。结论基于GBM算法的剖宫产后尿潴留预测模型显示出良好的区分能力,可作为潜在的产后并发症风险初筛工具。 展开更多
关键词 剖宫产 尿潴留 自动机器学习 预测模型 shap可视化 LIME可视
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部