【目的】通过研究不同热循环下高强钢热影响区的微观组织与力学性能转变规律,为以后相同钢种的实际工程应用提供理论依据。【方法】以30MnCrNiMo高强钢为研究对象,由于钢在连续加热和冷却过程中,会经历几个相变过程,在此过程中,钢的晶...【目的】通过研究不同热循环下高强钢热影响区的微观组织与力学性能转变规律,为以后相同钢种的实际工程应用提供理论依据。【方法】以30MnCrNiMo高强钢为研究对象,由于钢在连续加热和冷却过程中,会经历几个相变过程,在此过程中,钢的晶格结构发生改变,从而引起体积的变化,所以会在正常的膨胀曲线上出现转折点,基于此原理,利用Gleeble-3500热模拟试验机分别建立低加热速度为150℃/s和高加热速度为1100℃/s的焊接热影响区连续冷却转变(Simulated heat affected zone continuous cooling transforming,SHCCT)曲线,对其微观组织转变规律进行了对比与分析。【结果】结果表明,在低加热速度和高加热速度下的SHCCT曲线图均包含M,M+B,B,B+P+F 4个区域,且4个区域对应的硬度值由500 HV1向200 HV1递减;低加热速度SHCCT曲线在3.0℃/s的冷却速度下就可以发生F和P转变,而高加热速度SHCCT曲线需要在冷却速度为0.5℃/s时才能产生F和P转变;与低加热速度下的SHCCT曲线相比,高加热速度下的SHCCT曲线具有更高的Ac1,Ac3和Ms点,且Ac1与Ac3的温度差增大,F和P转变需要更长的孕育期。【结论】在相同钢种的实际工程应用中,为了得到板条状马氏体组织以达到良好的使用性能,可以在激光-熔化极活性气体保护(Metal active gas welding,MAG)复合焊接时,将冷却速度控制在7.5℃/s以上,在单MAG焊接时,将冷却速度控制在10.0℃/s以上。展开更多
为指导高强高韧Q420qE桥梁钢实际焊接工艺,采用Gleeble-3500热模拟试验机建立了试验钢的SHCCT曲线;针对各模拟样品,采用光学显微镜和透射显微镜观察了显微组织,测定了维氏硬度HV10,并利用Rykalin 2D模型根据冷速反推大致对应的焊接热输...为指导高强高韧Q420qE桥梁钢实际焊接工艺,采用Gleeble-3500热模拟试验机建立了试验钢的SHCCT曲线;针对各模拟样品,采用光学显微镜和透射显微镜观察了显微组织,测定了维氏硬度HV10,并利用Rykalin 2D模型根据冷速反推大致对应的焊接热输入并进行不同线能量焊接工艺模拟。结果表明:试验钢SHCCT冷速为1~10℃/s时,组织类型主要以粒状贝氏体为主,当冷速超过10℃/s时,开始出现板条贝氏体,并且随冷速的增加,相变开始和终了温度降低,贝氏体铁素体基体晶粒尺寸细化,由块状逐渐变为条状,维氏硬度增加。根据组织和硬度变化规律,初步推断高强高韧Q420qE钢适合焊接的热输入范围在45 k J/cm以下。展开更多
文摘【目的】通过研究不同热循环下高强钢热影响区的微观组织与力学性能转变规律,为以后相同钢种的实际工程应用提供理论依据。【方法】以30MnCrNiMo高强钢为研究对象,由于钢在连续加热和冷却过程中,会经历几个相变过程,在此过程中,钢的晶格结构发生改变,从而引起体积的变化,所以会在正常的膨胀曲线上出现转折点,基于此原理,利用Gleeble-3500热模拟试验机分别建立低加热速度为150℃/s和高加热速度为1100℃/s的焊接热影响区连续冷却转变(Simulated heat affected zone continuous cooling transforming,SHCCT)曲线,对其微观组织转变规律进行了对比与分析。【结果】结果表明,在低加热速度和高加热速度下的SHCCT曲线图均包含M,M+B,B,B+P+F 4个区域,且4个区域对应的硬度值由500 HV1向200 HV1递减;低加热速度SHCCT曲线在3.0℃/s的冷却速度下就可以发生F和P转变,而高加热速度SHCCT曲线需要在冷却速度为0.5℃/s时才能产生F和P转变;与低加热速度下的SHCCT曲线相比,高加热速度下的SHCCT曲线具有更高的Ac1,Ac3和Ms点,且Ac1与Ac3的温度差增大,F和P转变需要更长的孕育期。【结论】在相同钢种的实际工程应用中,为了得到板条状马氏体组织以达到良好的使用性能,可以在激光-熔化极活性气体保护(Metal active gas welding,MAG)复合焊接时,将冷却速度控制在7.5℃/s以上,在单MAG焊接时,将冷却速度控制在10.0℃/s以上。
文摘为指导高强高韧Q420qE桥梁钢实际焊接工艺,采用Gleeble-3500热模拟试验机建立了试验钢的SHCCT曲线;针对各模拟样品,采用光学显微镜和透射显微镜观察了显微组织,测定了维氏硬度HV10,并利用Rykalin 2D模型根据冷速反推大致对应的焊接热输入并进行不同线能量焊接工艺模拟。结果表明:试验钢SHCCT冷速为1~10℃/s时,组织类型主要以粒状贝氏体为主,当冷速超过10℃/s时,开始出现板条贝氏体,并且随冷速的增加,相变开始和终了温度降低,贝氏体铁素体基体晶粒尺寸细化,由块状逐渐变为条状,维氏硬度增加。根据组织和硬度变化规律,初步推断高强高韧Q420qE钢适合焊接的热输入范围在45 k J/cm以下。