鲁西地区太古宙表壳岩包括新太古代早期和晚期两期表壳岩,早期表壳岩主要由变质玄武岩-科马提岩组成,晚期表壳岩主要由变质火山岩-碎屑沉积岩和BIF(Banded Iron Formations)组成。韩旺铁矿位于鲁西的西北部,铁矿区内存在大量变质玄武岩...鲁西地区太古宙表壳岩包括新太古代早期和晚期两期表壳岩,早期表壳岩主要由变质玄武岩-科马提岩组成,晚期表壳岩主要由变质火山岩-碎屑沉积岩和BIF(Banded Iron Formations)组成。韩旺铁矿位于鲁西的西北部,铁矿区内存在大量变质玄武岩-科马提岩,早期认为该BIF形成于新太古代早期,而新的研究认为鲁西地区BIF都形成于新太古代晚期。本文对韩旺铁矿区内与BIF互层的黑云变粒岩和侵入其中的片麻状花岗闪长岩开展锆石SHRIMP U-Pb定年,获得年龄分别为(2529±7)Ma和(2534±11)Ma。黑云变粒岩和片麻状花岗闪长岩的TREE、(La/Yb)N、Eu/Eu*分别为76×10^(–6)、19.8、0.84和82.7×10^(–6)、17.3、1.14,它们的岩浆锆石的εHf值、单阶段Hf同位素模式年龄分别为5.5~9.46、2.5~2.6 Ga和6.3~9.4、2.48~2.60 Ga。研究支持了鲁西地区BIF形成于新太古代晚期的认识。表壳岩形成、变质变形和花岗闪长岩侵入发生在一个很短的时间范围内。研究还表明,黑云变粒岩的原岩为英安质火山岩,很可能形成于新生玄武质岩浆的强烈结晶分异作用,花岗闪长岩形成于新生玄武质岩石部分熔融,形成过程中有陆壳物质的加入。展开更多
The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UH...The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.展开更多
基金supported by the National Nature Science Foundation of China(Grant no.41972050).
文摘The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.