The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UH...The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.展开更多
The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-cal...The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.展开更多
Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Centr...Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.展开更多
Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the fi...Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the five samples show a major peak at 2500 Ma and a secondary peak at 2000 Ma, suggesting their provenances were mainly from the crystalline basement of the North China Craton and the Trans-North China Orogen. The youngest zircon has an age of 1673 d: 44 Ma, indicating that the Chuanlinggou Formation was deposited after this age. From sample MC4 to MC5, lithology changed from a clastic rock (fine-grained sandstone) to a carbonate rock (fine-grained dolomite), suggesting that the depositional basin became progressively deeper. The age spectrum of sample MC5 shows a major peak at 2500 Ma and a secondary peak at 2000 Ma. Sample MC4, which is stratigraphically lower than sample MC5, only had one peak at 2500 Ma. We conclude that there was a transgressive event when sediments represented by MC5 was deposited, and seawater carried ca. 2000 Ma clastic materials to the basin where the Chuanlinggou Formation was deposited, leading to the addition of ca. 2000 Ma detritus. Our research indicates that the source area for the sediments became more extensive with time. We conclude that the Chuanlinggou Formation in the Ming Tombs District was deposited in a low-energy mud fiat sedimentary environment in the inter-supra tidal zone because it is mainly composed of silty mudstone and fine-grained sandstone with relatively simple sedimentary structures.展开更多
We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic p...We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.展开更多
Zircon SHRIMP ages of the Aolaoshan granite on the south margin of the QilianMts. range from 445 + - 15.3 to 496 + - 7.6 Ma (averaging 473 Ma), belonging to the EarlyOrdovician. Geochemically, the granite is similar t...Zircon SHRIMP ages of the Aolaoshan granite on the south margin of the QilianMts. range from 445 + - 15.3 to 496 + - 7.6 Ma (averaging 473 Ma), belonging to the EarlyOrdovician. Geochemically, the granite is similar to I-type granite and, tectonically, was formed inan island-arc environment based on relevant diagrams for structural discriminations. Consideringalso the regional geology, the authors suggest that the granite is part of an ultrahigh-pressurebelt on the south margin of the Qilian Mts. and that its formation bears a close relationship tothis belt.展开更多
Objective Large igneous provinces (LIPs) are sites of spatially contiguous, rapidly emplaced magmatic rocks, which represent the physical and chemical transfer of material from the mantle to the crust. Exposed with...Objective Large igneous provinces (LIPs) are sites of spatially contiguous, rapidly emplaced magmatic rocks, which represent the physical and chemical transfer of material from the mantle to the crust. Exposed within some continental LIPs are felsic and rnafic plutonic and volcanic rocks. Although their volumes are minor compared to the flood basalts, the plutonic rocks of continental LIPs are often associated with economic deposits of precious metals. Within the Permian Tarim LIP of NW China, there are at least two layered ultramafic-mafic intrusions (e.g. Wajilitag and Piqiang) contain economically important Fe- Ti-V oxide deposits. Spatially associated with these layered ultramafic-mafic intrusions are syenitic and granitic plutons, which have chemical characteristics of A- type granitoids.展开更多
Due to various courses of formation of zircons from kimbedites, different kinds of zircons can provide useful information about the mantle and the crystallization of kimberlites. We chose 9 typical ones out of 33 zirc...Due to various courses of formation of zircons from kimbedites, different kinds of zircons can provide useful information about the mantle and the crystallization of kimberlites. We chose 9 typical ones out of 33 zircons from the Shengli- 1 kimberlite pipe in Mengyin County, Shandong Province to study their ages and formation by means of SHRIMP, CL, Raman spectroscopy, etc. The result shows that the ^207Pb/^206Pb ages of many zircons vary from 2567±13 Ma to 2636±42 Ma, which are close to the age of Archaean granitoid (2457.3±47 Ma) in the study area. The contents of U and Th in the samples are higher than those of zircons crystallized in kimbedite and vary from 89 to 398 ppm as well as from 10 to 283 ppm. Color zones are obvious in these samples under the CL. The inclusions are composed of feldspar, quartz, apatite, etc. The above results show that the zircon samples came from the crust of the earth, which means that the kimberlite magmas are contaminated by crustal substances. The position where a great deal of volatile escapes and even explodes during rapid rise of magmas is located at the boundary of the ancient basement and the Precambrian stratum.展开更多
Objective The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the North Tianshan Mountains. This work used zircon U-Pb age data, bulk rock major and trace elements, Sr-Nd-Pb isotope data to ...Objective The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the North Tianshan Mountains. This work used zircon U-Pb age data, bulk rock major and trace elements, Sr-Nd-Pb isotope data to assess mantle source characteristics and crustal assimilation of the parental magma of the Sidingheishan intrusion. We have also discussed the tectonic evolution of the southern margin of the Central Asian Orogenic belt in the Late Paleozoic.展开更多
Objective The potassic and ultrapotassic rocks relating to the India-Eurasia collision and continual plate convergence are widely distributed in the Lhasa terrane. These rocks are very important to understand the dee...Objective The potassic and ultrapotassic rocks relating to the India-Eurasia collision and continual plate convergence are widely distributed in the Lhasa terrane. These rocks are very important to understand the deep processes of the India-Eurasia collision and the uplift and evolution of the Tibetan Plateau. Although high-potassic volcanic rocks are also exposed in the western Lhasa terrane, their formation time is still uncertain for the lack of reliable dating. We carried out zircon U-Pb geochronological study on the Langjiu Formation volcanic rocks, which are part of the Early Cretaceous Zenong group volcanic rocks based on 1:250000 scale Shiquanhe regional geological survey report, in the Shiquanhe area of the western Lhasa terrane. These new age data not only offer chronological basis for the regional stratigraphic correlation and classification, but also provide an essential opportunity for revealing signatures of magmatic pulses hidden in the deep crust of the Lhasa terrane.展开更多
Objective During the Permian, at least four mafic continental large igneous provinces (LIPs) were tbrmed in eastern Asia, i.e., the Siberian traps (-251 Ma), Emeishan LIP (-260 Ma), Tarim LIP (-290-270 Ma) an...Objective During the Permian, at least four mafic continental large igneous provinces (LIPs) were tbrmed in eastern Asia, i.e., the Siberian traps (-251 Ma), Emeishan LIP (-260 Ma), Tarim LIP (-290-270 Ma) and Panjal traps (-290 Ma) (Shellnutt et al., 2015). The Emeishan and Tarim LIPs in China are both known for the presence of several magmatic Fe-Ti-V oxide deposits hosted in layered mafic- ultramafic intrusions. The origin of such magmatic Fe-Ti- V oxide deposits is enigmatic. One of the long-lasting debates is the mechanism by which large amounts of Fe-Ti oxides accumulated in the layered intrusions. Regardless of mechanism, there is still considerable debate regarding the mantle source compositions of the Fe-Ti-V oxide ore- bearing intrusions, in the Tarim LIP, a giant Fe-Ti-V oxide deposit is hosted by the Piqiang layered intrusion at the northern margin of the Tarim block. This intrusion consists mainly of gabbro and minor plagioclase-bearing clinopyroxenite and anorthosite (Fig. l a). For this study we present new SHRIMP zircon U-Pb age and whole-rock geochemical data for the Piqiang layered gabbroic intrusion to evaluate the nature of its possible source compositions, which in turn aids in understanding the formation of the giant Fe-Ti-V oxide deposit in the plume- related LIPs.展开更多
This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age o...This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age of the former is 142.8±1.8 Ma; that of the latter is 151.8±2.6 Ma. These data indicate that they were formed during the Late Jurassic (142.8 to 151.8 Ma). Zoned magma chamber was formed because of double diffusive convection. Therefore, the intrusive sequence of magma is generally from quartz monzonite through quartz monzodiorite to pyroxene monzodiorite, i.e. an inverted sequence.展开更多
The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic di...The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U-Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.展开更多
Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineraliz...Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineralized porphyry and ores in the Donggou molybdenum deposit. A SHRIMP U-Pb zircon dating of the Donggou aluminous A-type granite-porphyry gave a rock-forming age of 112±1 Ma, and the ICP-MS Re-Os analyses of molybdenite from the molybdenum deposit yielded ReOs model ages ranging from 116.5±1.7 to 115.5±1.7 Ma for the deposit. The ages obtained by the two methods are quite close, suggesting that the rocks and ores formed approximately at the same time. The Donggou molybdenum deposit formed at least 20 Ma later than the Jinduicheng, Nannihu, Shangfanggou and Leimengou porphyry molybdenum deposits in the same molybdenum belt, implying that these deposits were formed in different tectonic settings.展开更多
A mass of granitoid and dioritic intrusions are distributed in the southern Yidun Arc, among which the representative Indosinian intrusions include the Dongco and Maxionggou granitoid intrusions in Daocheng County and...A mass of granitoid and dioritic intrusions are distributed in the southern Yidun Arc, among which the representative Indosinian intrusions include the Dongco and Maxionggou granitoid intrusions in Daocheng County and hypabyssal intrusions intruding into arc volcanic rocks near the Xiangcheng town. The Dongco and Maxionggou granitoid intrusions consist mainly of porphyraceous monzogranites, megacryst monzogranites and aplite granites. The Xiangcheng hypabyssal intrusions are composed dominantly of dioritic porphyries. SHRIMP zircon ages of 224±3 Ma and 222±3 Ma have been obtained for the Dongco granitoid intrusion and the Xiangcheng dioritic porphyries, respectively. The Xiongcheng dioritic porphyries show a calc-alkaline geochemical feature, and are characterized by higher Sr/Y ratios, depletive Nb, Ta, P and Ti, enriched LILEs, and lower εNd (t) (=-3.27), suggesting that they might be derived from mantle source magmas that were obviously contaminated by continent crustal materials. However, the Dongco and Maxionggou granitoids belong to high-potassium calcalkaline series with a per-metaluminous feature, and are characterized by higher CaO/(∑FeO+MgO) and Al2O3/(∑FeO+ MgO) ratios, lower (La/Yb)n and Sr/Y ratios, depletive Nb, Ta, Sr, P and Ti, enriched LILEs, and very low εNd (t) (=-8.10), indicating that the granitoids might be derived from partial melting of continental crust materials mainly of graywacke. Petrogenesis of Dongco and Maxionggou granitoids implies that there was an oceanic crust between the Zongza continental block (ZCB) and western margin of the Yangtze Craton (WMYZC). And the oceanic crust slab subducted westward during the Indosinian Epoch, producing an Andes-type continent marginal arc and a backarc basin at the WMSCC. Then the oceanic basin closed and a sinistrally lateral collision occurred at ca. 224 Ma-222 Ma between the ZCB and the WMYZC, causing partial melting of sediments in the back-arc basin to generate granitoid magmas of the Dongco and Maxionggou intrusions.展开更多
Banded Iron Formations (BIFs) were formed by contemporaneous events of active sediments supply and the venting of a hydrothermal fluid source at the Mid-Ocean-Ridge. BIFs within the Ntem Complex at the northern edge o...Banded Iron Formations (BIFs) were formed by contemporaneous events of active sediments supply and the venting of a hydrothermal fluid source at the Mid-Ocean-Ridge. BIFs within the Ntem Complex at the northern edge of the Congo Craton are intercalated with metasandstones and siltstones. SHRIMP U-Pb analysis on detrital zircons obtained from these metasediments gave variable ages from over 3000 Ma to 1000 Ma with the maximum age of deposition clustered around 1200 Ma and the peak of deposition at 1800 Ma. This age range suggested that the sub-basin was opened sometime in the Archean and remained active up till the Neoproterozoic. Zircons with Archean ages have a provenance linked to the charnockitic suite and the high-K granites within the Ntem Complex. The Paleoproterozoic ages are attributed to clastic inputs from the neigbouring Nyong Series west of the Ntem Complex. Also the peak of deposition in the Proterozoic could probably be explained by the globally recognized intense crust-forming processes in the Early Proterozoic time. The provenance of the younger Neoproterozoic ages is tied to various lithologies within the northern mobile belts of the Adamawa-Yade massifs and correlates with Neoproterozoic sedimentation ages in the Yaoundé, Lom and Poli series. The Neoproterozoic ages obtained are comparable to those obtained from metasediments of the Amazonian Craton and provide evidence of Pre-Gondwana assemblage of the Congo and the S?o Francisco Cratons.展开更多
Objective The Bangong Co–Nujiang River suture zone is the great boundary between the Lhasa and Qiangtang terranes in the Tibetan Plateau.A series of major scientific issues are still controversial at present such as ...Objective The Bangong Co–Nujiang River suture zone is the great boundary between the Lhasa and Qiangtang terranes in the Tibetan Plateau.A series of major scientific issues are still controversial at present such as the subduction polarity and evolutionary process of this suture(Wei Shaogang et al.,2017).展开更多
The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eight...The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eighteen analyses for fine-grained porphyritic diorite gave two concordia ages, in which ten analyses constitute the young age group, giving ^206Pb/^238U ages ranging from 167.9 Ma to 183 Ma with a weighted mean age of 175.7±3.8 Ma, and the other eight yielded ^207Pb/^206Pb ages of 2502 Ma to 2554 Ma with a weighted mean 2518±11 Ma. Two analyses for syenitic porphyry gave ages of 2485 Ma and 2512 Ma, respectively. The age of 175.7±3.8 Ma indicates that the crystallization of the Tongshi magmatic complex occurred in the Middle Jurassic, whereas that of 2518±11 Ma is interpreted as the age of inherited magmatic zircons in the Neoarchean Wutai period.展开更多
The West Kunlun orogenic belt is located at the conjunction of the paleo\|Asian tectonic system and the Tethys tectonic system. Petrological and mineralogical studies of the Early Cambrian metamorphic surface crust in...The West Kunlun orogenic belt is located at the conjunction of the paleo\|Asian tectonic system and the Tethys tectonic system. Petrological and mineralogical studies of the Early Cambrian metamorphic surface crust in this region have shown that in case the metamorphism reached low\|temperature granulate facies, the typical mineral assemblage is biotite\|garnet\|silimanite\|K feldspar\|plagioclase\|quartz. The peak metamorphic temperatures are within the range of 720-740℃ and the pressure is \{0.6\} GPa±. Three types of metamorphic zircon have been detected in the metamorphic rocks: the complex inclusion\|bearing type; the early relic zircon inclusion\|bearing type; and the inclusion\|free type. SHRIMP age determination of these three types of metamorphic zircon have revealed that these zircons were formed principally during 400-460 Ma, indicating that pre\|Cambrian metamorphic surface crust rocks underwent low\|temperature granulite facies metamorphism during the Caledonian. In combination with the geological characteristics of this region, it is considered that when the oceanic basin was closed, there occurred intense intracontinental subduction (type A), bringing part of the Early Cambrian metamorphic basement in this region downwards to the lower crust. Meanwhile, there were accompanied with tectonic deformation at deep levels and medium\| to high\|grade metamorphism. This study provided important chronological and mineralogical evidence for the exploration of the evolutionary mechanism and process of the West Kunlun Early Paleozoic.展开更多
基金supported by the National Nature Science Foundation of China(Grant no.41972050).
文摘The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.
文摘The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.
基金co-supported by the National Natural Science Foundation of China(grant No.41302070)the Fundamental Research Funds for the Central Universities (grants No.310827172004 and 310827173401)Geological Exploration Fund Project of Qinghai Province (grant No.2012209)
文摘Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.
基金financially supported by the Ministry of Land and Natural Resources (Grant No. 201311116)the National Natural Science Foundation of China (Grant No. 41173065)+1 种基金Ministry of Science and Technology (No. 2012FY120100)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology (Grant No. J1403)
文摘Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the five samples show a major peak at 2500 Ma and a secondary peak at 2000 Ma, suggesting their provenances were mainly from the crystalline basement of the North China Craton and the Trans-North China Orogen. The youngest zircon has an age of 1673 d: 44 Ma, indicating that the Chuanlinggou Formation was deposited after this age. From sample MC4 to MC5, lithology changed from a clastic rock (fine-grained sandstone) to a carbonate rock (fine-grained dolomite), suggesting that the depositional basin became progressively deeper. The age spectrum of sample MC5 shows a major peak at 2500 Ma and a secondary peak at 2000 Ma. Sample MC4, which is stratigraphically lower than sample MC5, only had one peak at 2500 Ma. We conclude that there was a transgressive event when sediments represented by MC5 was deposited, and seawater carried ca. 2000 Ma clastic materials to the basin where the Chuanlinggou Formation was deposited, leading to the addition of ca. 2000 Ma detritus. Our research indicates that the source area for the sediments became more extensive with time. We conclude that the Chuanlinggou Formation in the Ming Tombs District was deposited in a low-energy mud fiat sedimentary environment in the inter-supra tidal zone because it is mainly composed of silty mudstone and fine-grained sandstone with relatively simple sedimentary structures.
基金financially supported by Geological Survey of China Projects(Nos.1212010814054,1212010911049)Ministry of land and resources of public welfare scientific research(No.201311116)
文摘We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.
文摘Zircon SHRIMP ages of the Aolaoshan granite on the south margin of the QilianMts. range from 445 + - 15.3 to 496 + - 7.6 Ma (averaging 473 Ma), belonging to the EarlyOrdovician. Geochemically, the granite is similar to I-type granite and, tectonically, was formed inan island-arc environment based on relevant diagrams for structural discriminations. Consideringalso the regional geology, the authors suggest that the granite is part of an ultrahigh-pressurebelt on the south margin of the Qilian Mts. and that its formation bears a close relationship tothis belt.
基金financially supported by the National Natural Science Foundation of China (Grant No.41703030)research grants from the East China University of Technology (Grants No.DHBK2015323 and RGET1504)the Jiangxi Provincial Department of Education (Grant No.GJJ150556)
文摘Objective Large igneous provinces (LIPs) are sites of spatially contiguous, rapidly emplaced magmatic rocks, which represent the physical and chemical transfer of material from the mantle to the crust. Exposed within some continental LIPs are felsic and rnafic plutonic and volcanic rocks. Although their volumes are minor compared to the flood basalts, the plutonic rocks of continental LIPs are often associated with economic deposits of precious metals. Within the Permian Tarim LIP of NW China, there are at least two layered ultramafic-mafic intrusions (e.g. Wajilitag and Piqiang) contain economically important Fe- Ti-V oxide deposits. Spatially associated with these layered ultramafic-mafic intrusions are syenitic and granitic plutons, which have chemical characteristics of A- type granitoids.
基金supported by the National Natural Science Foundation of China(40272021)the Outstanding Young Teachers Project of China University of Geosciences(CUGQNL0319).
文摘Due to various courses of formation of zircons from kimbedites, different kinds of zircons can provide useful information about the mantle and the crystallization of kimberlites. We chose 9 typical ones out of 33 zircons from the Shengli- 1 kimberlite pipe in Mengyin County, Shandong Province to study their ages and formation by means of SHRIMP, CL, Raman spectroscopy, etc. The result shows that the ^207Pb/^206Pb ages of many zircons vary from 2567±13 Ma to 2636±42 Ma, which are close to the age of Archaean granitoid (2457.3±47 Ma) in the study area. The contents of U and Th in the samples are higher than those of zircons crystallized in kimbedite and vary from 89 to 398 ppm as well as from 10 to 283 ppm. Color zones are obvious in these samples under the CL. The inclusions are composed of feldspar, quartz, apatite, etc. The above results show that the zircon samples came from the crust of the earth, which means that the kimberlite magmas are contaminated by crustal substances. The position where a great deal of volatile escapes and even explodes during rapid rise of magmas is located at the boundary of the ancient basement and the Precambrian stratum.
基金financially supported by the National Science Foundation of China(grants No.41402070, 41372101 and 41602082)China Geological Survey (grant No.DD20160346)
文摘Objective The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the North Tianshan Mountains. This work used zircon U-Pb age data, bulk rock major and trace elements, Sr-Nd-Pb isotope data to assess mantle source characteristics and crustal assimilation of the parental magma of the Sidingheishan intrusion. We have also discussed the tectonic evolution of the southern margin of the Central Asian Orogenic belt in the Late Paleozoic.
基金granted by the National Natural Science Foundation of China (Grant No.41572205)
文摘Objective The potassic and ultrapotassic rocks relating to the India-Eurasia collision and continual plate convergence are widely distributed in the Lhasa terrane. These rocks are very important to understand the deep processes of the India-Eurasia collision and the uplift and evolution of the Tibetan Plateau. Although high-potassic volcanic rocks are also exposed in the western Lhasa terrane, their formation time is still uncertain for the lack of reliable dating. We carried out zircon U-Pb geochronological study on the Langjiu Formation volcanic rocks, which are part of the Early Cretaceous Zenong group volcanic rocks based on 1:250000 scale Shiquanhe regional geological survey report, in the Shiquanhe area of the western Lhasa terrane. These new age data not only offer chronological basis for the regional stratigraphic correlation and classification, but also provide an essential opportunity for revealing signatures of magmatic pulses hidden in the deep crust of the Lhasa terrane.
基金financially supported by the National Natural Science Foundation of China(grant No.41703030)research grants from the East China University of Technology(grants No.DHBK2015323 and RGET1504)
文摘Objective During the Permian, at least four mafic continental large igneous provinces (LIPs) were tbrmed in eastern Asia, i.e., the Siberian traps (-251 Ma), Emeishan LIP (-260 Ma), Tarim LIP (-290-270 Ma) and Panjal traps (-290 Ma) (Shellnutt et al., 2015). The Emeishan and Tarim LIPs in China are both known for the presence of several magmatic Fe-Ti-V oxide deposits hosted in layered mafic- ultramafic intrusions. The origin of such magmatic Fe-Ti- V oxide deposits is enigmatic. One of the long-lasting debates is the mechanism by which large amounts of Fe-Ti oxides accumulated in the layered intrusions. Regardless of mechanism, there is still considerable debate regarding the mantle source compositions of the Fe-Ti-V oxide ore- bearing intrusions, in the Tarim LIP, a giant Fe-Ti-V oxide deposit is hosted by the Piqiang layered intrusion at the northern margin of the Tarim block. This intrusion consists mainly of gabbro and minor plagioclase-bearing clinopyroxenite and anorthosite (Fig. l a). For this study we present new SHRIMP zircon U-Pb age and whole-rock geochemical data for the Piqiang layered gabbroic intrusion to evaluate the nature of its possible source compositions, which in turn aids in understanding the formation of the giant Fe-Ti-V oxide deposit in the plume- related LIPs.
文摘This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age of the former is 142.8±1.8 Ma; that of the latter is 151.8±2.6 Ma. These data indicate that they were formed during the Late Jurassic (142.8 to 151.8 Ma). Zoned magma chamber was formed because of double diffusive convection. Therefore, the intrusive sequence of magma is generally from quartz monzonite through quartz monzodiorite to pyroxene monzodiorite, i.e. an inverted sequence.
基金supported by the National Natural Science Foundation of China(no.:40703012)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of the Peoples Republic of China(no.:J0809),and Miyun Tourism Administration for the Yunmengshan National Geopark.
文摘The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U-Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.
基金supported by the National Natural Science Foundation of China(Grant 40434011)China Geological Survey Project of the Ministry of Land and Resources(Grant 1212010535804).
文摘Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineralized porphyry and ores in the Donggou molybdenum deposit. A SHRIMP U-Pb zircon dating of the Donggou aluminous A-type granite-porphyry gave a rock-forming age of 112±1 Ma, and the ICP-MS Re-Os analyses of molybdenite from the molybdenum deposit yielded ReOs model ages ranging from 116.5±1.7 to 115.5±1.7 Ma for the deposit. The ages obtained by the two methods are quite close, suggesting that the rocks and ores formed approximately at the same time. The Donggou molybdenum deposit formed at least 20 Ma later than the Jinduicheng, Nannihu, Shangfanggou and Leimengou porphyry molybdenum deposits in the same molybdenum belt, implying that these deposits were formed in different tectonic settings.
文摘A mass of granitoid and dioritic intrusions are distributed in the southern Yidun Arc, among which the representative Indosinian intrusions include the Dongco and Maxionggou granitoid intrusions in Daocheng County and hypabyssal intrusions intruding into arc volcanic rocks near the Xiangcheng town. The Dongco and Maxionggou granitoid intrusions consist mainly of porphyraceous monzogranites, megacryst monzogranites and aplite granites. The Xiangcheng hypabyssal intrusions are composed dominantly of dioritic porphyries. SHRIMP zircon ages of 224±3 Ma and 222±3 Ma have been obtained for the Dongco granitoid intrusion and the Xiangcheng dioritic porphyries, respectively. The Xiongcheng dioritic porphyries show a calc-alkaline geochemical feature, and are characterized by higher Sr/Y ratios, depletive Nb, Ta, P and Ti, enriched LILEs, and lower εNd (t) (=-3.27), suggesting that they might be derived from mantle source magmas that were obviously contaminated by continent crustal materials. However, the Dongco and Maxionggou granitoids belong to high-potassium calcalkaline series with a per-metaluminous feature, and are characterized by higher CaO/(∑FeO+MgO) and Al2O3/(∑FeO+ MgO) ratios, lower (La/Yb)n and Sr/Y ratios, depletive Nb, Ta, Sr, P and Ti, enriched LILEs, and very low εNd (t) (=-8.10), indicating that the granitoids might be derived from partial melting of continental crust materials mainly of graywacke. Petrogenesis of Dongco and Maxionggou granitoids implies that there was an oceanic crust between the Zongza continental block (ZCB) and western margin of the Yangtze Craton (WMYZC). And the oceanic crust slab subducted westward during the Indosinian Epoch, producing an Andes-type continent marginal arc and a backarc basin at the WMSCC. Then the oceanic basin closed and a sinistrally lateral collision occurred at ca. 224 Ma-222 Ma between the ZCB and the WMYZC, causing partial melting of sediments in the back-arc basin to generate granitoid magmas of the Dongco and Maxionggou intrusions.
文摘Banded Iron Formations (BIFs) were formed by contemporaneous events of active sediments supply and the venting of a hydrothermal fluid source at the Mid-Ocean-Ridge. BIFs within the Ntem Complex at the northern edge of the Congo Craton are intercalated with metasandstones and siltstones. SHRIMP U-Pb analysis on detrital zircons obtained from these metasediments gave variable ages from over 3000 Ma to 1000 Ma with the maximum age of deposition clustered around 1200 Ma and the peak of deposition at 1800 Ma. This age range suggested that the sub-basin was opened sometime in the Archean and remained active up till the Neoproterozoic. Zircons with Archean ages have a provenance linked to the charnockitic suite and the high-K granites within the Ntem Complex. The Paleoproterozoic ages are attributed to clastic inputs from the neigbouring Nyong Series west of the Ntem Complex. Also the peak of deposition in the Proterozoic could probably be explained by the globally recognized intense crust-forming processes in the Early Proterozoic time. The provenance of the younger Neoproterozoic ages is tied to various lithologies within the northern mobile belts of the Adamawa-Yade massifs and correlates with Neoproterozoic sedimentation ages in the Yaoundé, Lom and Poli series. The Neoproterozoic ages obtained are comparable to those obtained from metasediments of the Amazonian Craton and provide evidence of Pre-Gondwana assemblage of the Congo and the S?o Francisco Cratons.
基金financially supported by China Geological Survey Project(grant No.DD20160026)the National Natural Science Foundation of China(grant No.41403040)
文摘Objective The Bangong Co–Nujiang River suture zone is the great boundary between the Lhasa and Qiangtang terranes in the Tibetan Plateau.A series of major scientific issues are still controversial at present such as the subduction polarity and evolutionary process of this suture(Wei Shaogang et al.,2017).
基金This study was supported by the Major State Basic Rsearch Program of China(grant G1999043211)National Natural Science Foundation of China(grant 40272088).
文摘The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eighteen analyses for fine-grained porphyritic diorite gave two concordia ages, in which ten analyses constitute the young age group, giving ^206Pb/^238U ages ranging from 167.9 Ma to 183 Ma with a weighted mean age of 175.7±3.8 Ma, and the other eight yielded ^207Pb/^206Pb ages of 2502 Ma to 2554 Ma with a weighted mean 2518±11 Ma. Two analyses for syenitic porphyry gave ages of 2485 Ma and 2512 Ma, respectively. The age of 175.7±3.8 Ma indicates that the crystallization of the Tongshi magmatic complex occurred in the Middle Jurassic, whereas that of 2518±11 Ma is interpreted as the age of inherited magmatic zircons in the Neoarchean Wutai period.
文摘The West Kunlun orogenic belt is located at the conjunction of the paleo\|Asian tectonic system and the Tethys tectonic system. Petrological and mineralogical studies of the Early Cambrian metamorphic surface crust in this region have shown that in case the metamorphism reached low\|temperature granulate facies, the typical mineral assemblage is biotite\|garnet\|silimanite\|K feldspar\|plagioclase\|quartz. The peak metamorphic temperatures are within the range of 720-740℃ and the pressure is \{0.6\} GPa±. Three types of metamorphic zircon have been detected in the metamorphic rocks: the complex inclusion\|bearing type; the early relic zircon inclusion\|bearing type; and the inclusion\|free type. SHRIMP age determination of these three types of metamorphic zircon have revealed that these zircons were formed principally during 400-460 Ma, indicating that pre\|Cambrian metamorphic surface crust rocks underwent low\|temperature granulite facies metamorphism during the Caledonian. In combination with the geological characteristics of this region, it is considered that when the oceanic basin was closed, there occurred intense intracontinental subduction (type A), bringing part of the Early Cambrian metamorphic basement in this region downwards to the lower crust. Meanwhile, there were accompanied with tectonic deformation at deep levels and medium\| to high\|grade metamorphism. This study provided important chronological and mineralogical evidence for the exploration of the evolutionary mechanism and process of the West Kunlun Early Paleozoic.