Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. ...Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.展开更多
Abundant small mafic intrusions occur associated with granitoids along the Gangdise^ magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro-pyroxenite zone occurs along the so...Abundant small mafic intrusions occur associated with granitoids along the Gangdise^ magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro-pyroxenite zone occurs along the southern margin of the Gangdise^ belt to the north of the Yarlung Zangbo suture. The mafic intrusion zone spatially corresponds to a strong aeromagnetic anomaly, which extends -1400 km. The mafic intrusions consist of intermittently distributed small bodies and dikes of gabbro and dolerite with accumulates of pyroxenite, olivine pyroxenite, pegmatitic pyroxenite and amphibolite. Much evidence indicates that the Gangdise^ gabbro-pyroxenite assemblage is most likely a result of underplating of mantle-derived magma. Detailed field investigation and systematic sampling of the mafic rocks was conducted at six locations along the Lhasa-Xigaze^ segment of the mafic intrusive zone, and was followed by zircon SHRIMP Ⅱ U-Pb dating. In addition to the ages of two samples previously published (47.0±1 Ma and 48.9±1.1 Ma), the isotopic ages of the remaining four gabbro samples are 51.6±1.3Ma, 52.5±3.0 Ma, 50.2±4.2Ma and 49.9±1.1Ma. The range of these ages (47-52.5 Ma) provide geochronologic constraints on the Eocene timing of magma underplating beneath the Gangdise^ belt at ca. 50 Ma. This underplating event post-dated the initiation of the India-Eurasia continental collision by 15 million years and was contemporaneous with a process of magma mixing. The SHRIMP Ⅱ U-Pb isotopic analysis also found several old ages from a few zircon grains, mostly in a range of 479-526 Ma (weighted average age 503±10 Ma), thus yielding information about the pre-existing lower crust when underplating of mafic magma took place. It is believed that magma underplating was one of the major mechanisms for crustal growth during the Indian-Eurasia collision, possibly corresponding in time to the formation of the 14-16 km-thick "crnst-mantle transitional zone" characterized by Vp=6.85-6.9 km/s.展开更多
SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inher...SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inherited and detrital zircons in the Jiagou intrusive were formed at -2500 Ma, -2000 Ma and -1800 Ma. The SHRIMP zircon U-Pb dating in two gneiss xenoliths from the Jiagou intrusive yields the ages of 2461±22 Ma and 2508±15 Ma, respectively. The dating results from inherited and detrital zircons in the intrusives and the gneiss xenoliths imply that the magmas could be derived from the partial melting of the basement of the North China Block (NCB). The magmatism is strong and extensive in the periods from 115 to 132 Ma, which is of typical bimodal characteristics. It is suggested that the lithospheric thinning in the eastern North China Block reached its peak in 115-132 Ma.展开更多
The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic di...The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U-Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.展开更多
The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic ...The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic intrusions including gabbros, granodiorites, diorites;and various granites as well as metavol-canics. These rocks are cross-cut by narrow mafic dykes and aplites. SHRIMP zircon U-Pb data are presented for the granodiorite and a mafic dyke that cross-cut the granodiorites in the Saza area of the LGF, with the aim of constraining the mafic and felsic magmatism and their implication to gold mineralization. The zircon U-Pb data shows that the Saza granodiorites were emplaced at 1924 ± 13 Ma (MSWD = 2.6) whereas the cross-cutting mafic dyke yielded a zircon U-Pb age of 1758 ± 33 Ma (MSWD = 0.88). The dated granodiorite sample was in sheared contact with an altered mafic intrusive rock, most likely a diorite, along which an auriferous quartz vein occurs. The 1924 ± 13 Ma age of granodiorites is within error of the reported molybdenite Re-Os age of 1937 Ma determined for the gold mineralization event in Lupa Goldfields. Although auriferous quartz veins are younger than the granodiorites, the more or less similar ages between the emplacement of granodiorites and the mineralizing event indicate that the granodiorites might be the heat source (or driver) of hydrothermal fluids responsible for gold mineralization in the Lupa goldfields. This would further suggest that gold mineralization in the LGF is intrusion-related type. The mafic dykes represent the youngest rocks to have been emplaced in the area and hence the 1758 ± 33 Ma age of the mafic dykes conclude the magmatic evolution in the Lupa goldfields during the Palaeoproterozoic.展开更多
Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineraliz...Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineralized porphyry and ores in the Donggou molybdenum deposit. A SHRIMP U-Pb zircon dating of the Donggou aluminous A-type granite-porphyry gave a rock-forming age of 112±1 Ma, and the ICP-MS Re-Os analyses of molybdenite from the molybdenum deposit yielded ReOs model ages ranging from 116.5±1.7 to 115.5±1.7 Ma for the deposit. The ages obtained by the two methods are quite close, suggesting that the rocks and ores formed approximately at the same time. The Donggou molybdenum deposit formed at least 20 Ma later than the Jinduicheng, Nannihu, Shangfanggou and Leimengou porphyry molybdenum deposits in the same molybdenum belt, implying that these deposits were formed in different tectonic settings.展开更多
This paper focused on the zircon sensitive high resolution ion micro-probeU-Pb geochronology of the tourmalinites from boron-bearing series of borate deposits in Eastern Liaoning. The zircons commonly have core-rim st...This paper focused on the zircon sensitive high resolution ion micro-probeU-Pb geochronology of the tourmalinites from boron-bearing series of borate deposits in Eastern Liaoning. The zircons commonly have core-rim structures, most cores show oscillatory zoning in cathodoluminescence and plane polarized light images, suggesting a magmatic detrital origin. Ages of the magmatic detrital zircons from the hyalotonrmalite samples (N13) and (N14) are 2175 ± 5 Ma and 2171 ± 9 Ma, respectively. Moreover, metamorphic zircon from the sample (N13) shows an age of 1906 ± 4 Ma. Zircon core and rim from the hyalotourmalite sample (N02) record ages of 2171 ± 6 Ma and 1889± 62 Ma, which are explained as indicating the formation and metamorphic ages. Combined with the geological and geochemical studies, it can be concluded that the tourmalinites are formed during sedimentary exhalative mineralizations in the mid-Paleoproterozoic (-170 Ma) and underwent the metamorphism in the late-Paleoproterozoic (-1900 Ma). The tourmalinites are the products of submarine acid volcanism in the extension rifting phase of the Liaoji Paleoproterozoic Rift, the rockforming materials of which are derived from the mantle sources with recycling crustal contamination. The emergence of tourmalinites not only indicates the mid-Paleoproterozoic tectonic-magmatic processes, but also provides impetus, heat and material sources for the mineralization of borate deposits in Eastern Liaoning.展开更多
The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eight...The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eighteen analyses for fine-grained porphyritic diorite gave two concordia ages, in which ten analyses constitute the young age group, giving ^206Pb/^238U ages ranging from 167.9 Ma to 183 Ma with a weighted mean age of 175.7±3.8 Ma, and the other eight yielded ^207Pb/^206Pb ages of 2502 Ma to 2554 Ma with a weighted mean 2518±11 Ma. Two analyses for syenitic porphyry gave ages of 2485 Ma and 2512 Ma, respectively. The age of 175.7±3.8 Ma indicates that the crystallization of the Tongshi magmatic complex occurred in the Middle Jurassic, whereas that of 2518±11 Ma is interpreted as the age of inherited magmatic zircons in the Neoarchean Wutai period.展开更多
鲁西地区太古宙表壳岩包括新太古代早期和晚期两期表壳岩,早期表壳岩主要由变质玄武岩-科马提岩组成,晚期表壳岩主要由变质火山岩-碎屑沉积岩和BIF(Banded Iron Formations)组成。韩旺铁矿位于鲁西的西北部,铁矿区内存在大量变质玄武岩...鲁西地区太古宙表壳岩包括新太古代早期和晚期两期表壳岩,早期表壳岩主要由变质玄武岩-科马提岩组成,晚期表壳岩主要由变质火山岩-碎屑沉积岩和BIF(Banded Iron Formations)组成。韩旺铁矿位于鲁西的西北部,铁矿区内存在大量变质玄武岩-科马提岩,早期认为该BIF形成于新太古代早期,而新的研究认为鲁西地区BIF都形成于新太古代晚期。本文对韩旺铁矿区内与BIF互层的黑云变粒岩和侵入其中的片麻状花岗闪长岩开展锆石SHRIMP U-Pb定年,获得年龄分别为(2529±7)Ma和(2534±11)Ma。黑云变粒岩和片麻状花岗闪长岩的TREE、(La/Yb)N、Eu/Eu*分别为76×10^(–6)、19.8、0.84和82.7×10^(–6)、17.3、1.14,它们的岩浆锆石的εHf值、单阶段Hf同位素模式年龄分别为5.5~9.46、2.5~2.6 Ga和6.3~9.4、2.48~2.60 Ga。研究支持了鲁西地区BIF形成于新太古代晚期的认识。表壳岩形成、变质变形和花岗闪长岩侵入发生在一个很短的时间范围内。研究还表明,黑云变粒岩的原岩为英安质火山岩,很可能形成于新生玄武质岩浆的强烈结晶分异作用,花岗闪长岩形成于新生玄武质岩石部分熔融,形成过程中有陆壳物质的加入。展开更多
The Early Paleoproterozoic Monchegorsk Complex is exposed over an area of 550 km;and comprises two layered mafite–ultramafite intrusions:the Monchepluton of ultramafic and mafic rocks and the predominantly gabbroid
This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age o...This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age of the former is 142.8±1.8 Ma; that of the latter is 151.8±2.6 Ma. These data indicate that they were formed during the Late Jurassic (142.8 to 151.8 Ma). Zoned magma chamber was formed because of double diffusive convection. Therefore, the intrusive sequence of magma is generally from quartz monzonite through quartz monzodiorite to pyroxene monzodiorite, i.e. an inverted sequence.展开更多
The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-cal...The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.展开更多
The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and bot...The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.展开更多
This paper carried out a study on U--Th--Pb behavior of zircons in a "dry" rock system during high-grade metamorphism in the Archean basement of eastern Sbandong. The studied sample has a mineral assemblage of plagi...This paper carried out a study on U--Th--Pb behavior of zircons in a "dry" rock system during high-grade metamorphism in the Archean basement of eastern Sbandong. The studied sample has a mineral assemblage of plagioclase + K-feldspar + clinopyroxene + biotite + quartz and its pro- tolith is considered to be diorite. The zircons are stubby, equant or irregular in shape and show fir-leaf, sectorial, banded or oscillatory zoning. They contain inclusions, including mineral assemblages of clinopyroxene + orthopyroxene + hornblende + quartz and plagioclase + K-feldspar + biotite + quartz. Fifty SHRIMP analyses were performed on 34 zircon grains, which commonly yielded high Th/U ratios (mostly 〉0.5). Most analyses are distributed along concordia from 2.54 to 2.25 Ga, with the youngest age being - 1.95 Ga. Compositions and ages show large variations even in a same zircon grain. Combined with early studies, conclusions can be drawn as follows: 1) the diorite underwent two episodes of high-grade metamorphism, at the end of the Neoarchean and the Paleoproterozoic (-2.50 Ga and 1.95 Ga or slightly later); 2) high-grade metamorphism in a "dry" rock system may partially reset the U--Th--Pb system of zircons and, in this case, the ages between the oldest and youngest are chronologically meaningless; and 3) high Th/U ratios may be common features of zircons formed during high-grade metamorphic conditions.展开更多
Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Arch...Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.展开更多
Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the cr...Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the crystallization ages of Yanshanian granitoids broadly in the Nanling. The active continental margin of South China, as revealed by a combination of zircon U-Pb data, underwent a key granitoid-dominated magmatism in 165-100 Ma. Its evolution varied temporally, and spatially, registering under control of the paleo-Pacific slab subduction. The granitoids that occurred in 165-150 Ma broadly from the South China Sea to the Nanling are preferably related to two settings from volcanic-arc to back-arc extension, respectively. The activities of Cretaceous granitoids migrated from the southeastern Guangdong (148-130 Ma) to the Pearl River Mouth basin (127-112 Ma), corresponding to the model of a retreating subduction. The subduction-related granitoid magmatism in South China continued until 108-97 Ma. A tectonic transformation from slab-subduction to extension should occur at -100 Ma.展开更多
文摘Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.
文摘Abundant small mafic intrusions occur associated with granitoids along the Gangdise^ magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro-pyroxenite zone occurs along the southern margin of the Gangdise^ belt to the north of the Yarlung Zangbo suture. The mafic intrusion zone spatially corresponds to a strong aeromagnetic anomaly, which extends -1400 km. The mafic intrusions consist of intermittently distributed small bodies and dikes of gabbro and dolerite with accumulates of pyroxenite, olivine pyroxenite, pegmatitic pyroxenite and amphibolite. Much evidence indicates that the Gangdise^ gabbro-pyroxenite assemblage is most likely a result of underplating of mantle-derived magma. Detailed field investigation and systematic sampling of the mafic rocks was conducted at six locations along the Lhasa-Xigaze^ segment of the mafic intrusive zone, and was followed by zircon SHRIMP Ⅱ U-Pb dating. In addition to the ages of two samples previously published (47.0±1 Ma and 48.9±1.1 Ma), the isotopic ages of the remaining four gabbro samples are 51.6±1.3Ma, 52.5±3.0 Ma, 50.2±4.2Ma and 49.9±1.1Ma. The range of these ages (47-52.5 Ma) provide geochronologic constraints on the Eocene timing of magma underplating beneath the Gangdise^ belt at ca. 50 Ma. This underplating event post-dated the initiation of the India-Eurasia continental collision by 15 million years and was contemporaneous with a process of magma mixing. The SHRIMP Ⅱ U-Pb isotopic analysis also found several old ages from a few zircon grains, mostly in a range of 479-526 Ma (weighted average age 503±10 Ma), thus yielding information about the pre-existing lower crust when underplating of mafic magma took place. It is believed that magma underplating was one of the major mechanisms for crustal growth during the Indian-Eurasia collision, possibly corresponding in time to the formation of the 14-16 km-thick "crnst-mantle transitional zone" characterized by Vp=6.85-6.9 km/s.
基金research grants No.40172030 from the NSFC and No.TG1999075502 from the Ministryof Science and Technology of China.
文摘SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inherited and detrital zircons in the Jiagou intrusive were formed at -2500 Ma, -2000 Ma and -1800 Ma. The SHRIMP zircon U-Pb dating in two gneiss xenoliths from the Jiagou intrusive yields the ages of 2461±22 Ma and 2508±15 Ma, respectively. The dating results from inherited and detrital zircons in the intrusives and the gneiss xenoliths imply that the magmas could be derived from the partial melting of the basement of the North China Block (NCB). The magmatism is strong and extensive in the periods from 115 to 132 Ma, which is of typical bimodal characteristics. It is suggested that the lithospheric thinning in the eastern North China Block reached its peak in 115-132 Ma.
基金supported by the National Natural Science Foundation of China(no.:40703012)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of the Peoples Republic of China(no.:J0809),and Miyun Tourism Administration for the Yunmengshan National Geopark.
文摘The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U-Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.
文摘The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic intrusions including gabbros, granodiorites, diorites;and various granites as well as metavol-canics. These rocks are cross-cut by narrow mafic dykes and aplites. SHRIMP zircon U-Pb data are presented for the granodiorite and a mafic dyke that cross-cut the granodiorites in the Saza area of the LGF, with the aim of constraining the mafic and felsic magmatism and their implication to gold mineralization. The zircon U-Pb data shows that the Saza granodiorites were emplaced at 1924 ± 13 Ma (MSWD = 2.6) whereas the cross-cutting mafic dyke yielded a zircon U-Pb age of 1758 ± 33 Ma (MSWD = 0.88). The dated granodiorite sample was in sheared contact with an altered mafic intrusive rock, most likely a diorite, along which an auriferous quartz vein occurs. The 1924 ± 13 Ma age of granodiorites is within error of the reported molybdenite Re-Os age of 1937 Ma determined for the gold mineralization event in Lupa Goldfields. Although auriferous quartz veins are younger than the granodiorites, the more or less similar ages between the emplacement of granodiorites and the mineralizing event indicate that the granodiorites might be the heat source (or driver) of hydrothermal fluids responsible for gold mineralization in the Lupa goldfields. This would further suggest that gold mineralization in the LGF is intrusion-related type. The mafic dykes represent the youngest rocks to have been emplaced in the area and hence the 1758 ± 33 Ma age of the mafic dykes conclude the magmatic evolution in the Lupa goldfields during the Palaeoproterozoic.
基金supported by the National Natural Science Foundation of China(Grant 40434011)China Geological Survey Project of the Ministry of Land and Resources(Grant 1212010535804).
文摘Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineralized porphyry and ores in the Donggou molybdenum deposit. A SHRIMP U-Pb zircon dating of the Donggou aluminous A-type granite-porphyry gave a rock-forming age of 112±1 Ma, and the ICP-MS Re-Os analyses of molybdenite from the molybdenum deposit yielded ReOs model ages ranging from 116.5±1.7 to 115.5±1.7 Ma for the deposit. The ages obtained by the two methods are quite close, suggesting that the rocks and ores formed approximately at the same time. The Donggou molybdenum deposit formed at least 20 Ma later than the Jinduicheng, Nannihu, Shangfanggou and Leimengou porphyry molybdenum deposits in the same molybdenum belt, implying that these deposits were formed in different tectonic settings.
基金supported by the National Natural Science Foundation of China grant(40073013)
文摘This paper focused on the zircon sensitive high resolution ion micro-probeU-Pb geochronology of the tourmalinites from boron-bearing series of borate deposits in Eastern Liaoning. The zircons commonly have core-rim structures, most cores show oscillatory zoning in cathodoluminescence and plane polarized light images, suggesting a magmatic detrital origin. Ages of the magmatic detrital zircons from the hyalotonrmalite samples (N13) and (N14) are 2175 ± 5 Ma and 2171 ± 9 Ma, respectively. Moreover, metamorphic zircon from the sample (N13) shows an age of 1906 ± 4 Ma. Zircon core and rim from the hyalotourmalite sample (N02) record ages of 2171 ± 6 Ma and 1889± 62 Ma, which are explained as indicating the formation and metamorphic ages. Combined with the geological and geochemical studies, it can be concluded that the tourmalinites are formed during sedimentary exhalative mineralizations in the mid-Paleoproterozoic (-170 Ma) and underwent the metamorphism in the late-Paleoproterozoic (-1900 Ma). The tourmalinites are the products of submarine acid volcanism in the extension rifting phase of the Liaoji Paleoproterozoic Rift, the rockforming materials of which are derived from the mantle sources with recycling crustal contamination. The emergence of tourmalinites not only indicates the mid-Paleoproterozoic tectonic-magmatic processes, but also provides impetus, heat and material sources for the mineralization of borate deposits in Eastern Liaoning.
基金This study was supported by the Major State Basic Rsearch Program of China(grant G1999043211)National Natural Science Foundation of China(grant 40272088).
文摘The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eighteen analyses for fine-grained porphyritic diorite gave two concordia ages, in which ten analyses constitute the young age group, giving ^206Pb/^238U ages ranging from 167.9 Ma to 183 Ma with a weighted mean age of 175.7±3.8 Ma, and the other eight yielded ^207Pb/^206Pb ages of 2502 Ma to 2554 Ma with a weighted mean 2518±11 Ma. Two analyses for syenitic porphyry gave ages of 2485 Ma and 2512 Ma, respectively. The age of 175.7±3.8 Ma indicates that the crystallization of the Tongshi magmatic complex occurred in the Middle Jurassic, whereas that of 2518±11 Ma is interpreted as the age of inherited magmatic zircons in the Neoarchean Wutai period.
文摘The Early Paleoproterozoic Monchegorsk Complex is exposed over an area of 550 km;and comprises two layered mafite–ultramafite intrusions:the Monchepluton of ultramafic and mafic rocks and the predominantly gabbroid
文摘This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonitc porphyry from the Tongling area using the SHRIMP zircon U-Pb method. The crystallization age of the former is 142.8±1.8 Ma; that of the latter is 151.8±2.6 Ma. These data indicate that they were formed during the Late Jurassic (142.8 to 151.8 Ma). Zoned magma chamber was formed because of double diffusive convection. Therefore, the intrusive sequence of magma is generally from quartz monzonite through quartz monzodiorite to pyroxene monzodiorite, i.e. an inverted sequence.
文摘The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.
基金supported by Project 2012CB416803 of the State Key Fundamental Programthe National Scientific and Technological Supporting Key Projects (#2011BAB06B02)Geological Survey Project No. 1212011085060
文摘The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.
基金supported by the Key Program of the Ministry of Land and Resources of China(Grant Nos.1212010811033, 1212010711815)
文摘This paper carried out a study on U--Th--Pb behavior of zircons in a "dry" rock system during high-grade metamorphism in the Archean basement of eastern Sbandong. The studied sample has a mineral assemblage of plagioclase + K-feldspar + clinopyroxene + biotite + quartz and its pro- tolith is considered to be diorite. The zircons are stubby, equant or irregular in shape and show fir-leaf, sectorial, banded or oscillatory zoning. They contain inclusions, including mineral assemblages of clinopyroxene + orthopyroxene + hornblende + quartz and plagioclase + K-feldspar + biotite + quartz. Fifty SHRIMP analyses were performed on 34 zircon grains, which commonly yielded high Th/U ratios (mostly 〉0.5). Most analyses are distributed along concordia from 2.54 to 2.25 Ga, with the youngest age being - 1.95 Ga. Compositions and ages show large variations even in a same zircon grain. Combined with early studies, conclusions can be drawn as follows: 1) the diorite underwent two episodes of high-grade metamorphism, at the end of the Neoarchean and the Paleoproterozoic (-2.50 Ga and 1.95 Ga or slightly later); 2) high-grade metamorphism in a "dry" rock system may partially reset the U--Th--Pb system of zircons and, in this case, the ages between the oldest and youngest are chronologically meaningless; and 3) high Th/U ratios may be common features of zircons formed during high-grade metamorphic conditions.
基金the National Natural Science Foundation of China (40412012035, 40472096) for financial support.
文摘Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.
基金supported by the State Key Program of the National Natural Science of China(grant no2008ZX05023-003)the project of the State Key Laboratory of Marine Geology(grant noMG200904)the National Natural Science Foundation of China (grant no40872138)
文摘Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the crystallization ages of Yanshanian granitoids broadly in the Nanling. The active continental margin of South China, as revealed by a combination of zircon U-Pb data, underwent a key granitoid-dominated magmatism in 165-100 Ma. Its evolution varied temporally, and spatially, registering under control of the paleo-Pacific slab subduction. The granitoids that occurred in 165-150 Ma broadly from the South China Sea to the Nanling are preferably related to two settings from volcanic-arc to back-arc extension, respectively. The activities of Cretaceous granitoids migrated from the southeastern Guangdong (148-130 Ma) to the Pearl River Mouth basin (127-112 Ma), corresponding to the model of a retreating subduction. The subduction-related granitoid magmatism in South China continued until 108-97 Ma. A tectonic transformation from slab-subduction to extension should occur at -100 Ma.