期刊文献+
共找到218篇文章
< 1 2 11 >
每页显示 20 50 100
Atomic/nano-scale in-situ probing the shuttling effect of redox mediator in Na-O_(2) batteries
1
作者 Kai Yang Yiwei Li +8 位作者 Langlang Jia Yan Wang Zijian Wang YuChen jia Shichun Yang Magda Titirici Xinhua Liu Luyi Yang Feng Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期438-443,共6页
Sodium-oxygen batteries(Na-O_(2))have attracted extensive attention as promising energy storage systems due to their high energy density and low cost.Redox mediators are often employed to improve Na-O_(2) battery perf... Sodium-oxygen batteries(Na-O_(2))have attracted extensive attention as promising energy storage systems due to their high energy density and low cost.Redox mediators are often employed to improve Na-O_(2) battery performance,however,their effect on the formation mechanism of the oxygen reduction product(NaO_(2))is still unclear.Here,we have investigated the formation mechanism of NaO_(2) during the discharge process in the presence of a redox mediator with the help of atomic/nano-scale in-situ characterization tools used in concert(e.g.atomic force microscope,electrochemical quartz crystal microbalance(EQCM)and laser nano-particle analyzer).As a result,real-time observations on different time scales show that by shuttling electrons to the electrolyte,the redox mediator enables formation of NaO_(2) in the solution-phase instead of within a finite region near the electrode surface.These findings provide new fundamental insights on the understanding of Na-O_(2) batteries and new consequently perspectives on designing high performance metal-O_(2) batteries and other related functions. 展开更多
关键词 Na-O_(2)battery In-situ AFM EQCM Redox mediator shuttling effect
下载PDF
Targeting amyloid precursor protein shuttling and processing-long before amyloid beta formation
2
作者 Sage Arbor 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期207-209,共3页
Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation... Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation(e.g.,Parkinson’s disease:α-synuclein;Huntington’s disease:Huntingtin; 展开更多
关键词 AICD Targeting amyloid precursor protein shuttling and processing-long before amyloid beta formation APP ADAM
下载PDF
Designing metal sulfide-based cathodes and separators for suppressing polysulfide shuttling in lithium-sulfur batteries
3
作者 Guoyin Zhu Qingzhu Wu +5 位作者 Xianghua Zhang Yuwen Bao Xuan Zhang Zhuoyao Shi Yizhou Zhang Lianbo Ma 《Nano Research》 SCIE EI CSCD 2024年第4期2574-2591,共18页
Lithium-sulfur(Li-S)batteries,known for their high energy density,are attracting extensive research interest as a promising next-generation energy storage technology.However,their widespread use has been hampered by c... Lithium-sulfur(Li-S)batteries,known for their high energy density,are attracting extensive research interest as a promising next-generation energy storage technology.However,their widespread use has been hampered by certain issues,including the dissolution and migration of polysulfides,along with sluggish redox kinetics.Metal sulfides present a promising solution to these obstacles regarding their high electrical conductivity,strong chemical adsorption with polysulfides,and remarkable electrocatalytic capabilities for polysulfide conversion.In this review,the recent progress on the utilization of metal sulfide for suppressing polysulfide shuttling in Li-S batteries is systematically summarized,with a special focus on sulfur hosts and functional separators.The critical roles of metal sulfides in realizing high-performing Li-S batteries have been comprehensively discussed by correlating the materials’structure and electrochemical performances.Moreover,the remaining issues/challenges and future perspectives are highlighted.By offering a detailed understanding of the crucial roles of metal sulfides,this review dedicates to contributing valuable knowledge for the pursuit of high-efficiency Li-S batteries based on metal sulfides. 展开更多
关键词 lithium-sulfur batteries metal sulfides polysulfide shuttling sulfur hosts separator coating layers
原文传递
SIRT1 activation synergizes with FXR agonism in hepatoprotection via governing nucleocytoplasmic shuttling and degradation of FXR 被引量:2
4
作者 Shuang Cui Huijian Hu +6 位作者 An Chen Ming Cui Xiaojie Pan Pengfei Zhang Guangji Wang Hong Wang Haiping Hao 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第2期559-576,共18页
Farnesoid X receptor(FXR)is widely accepted as a promising target for various liver diseases;however,panels of ligands in drug development show limited clinical benefits,without a clear mechanism.Here,we reveal that a... Farnesoid X receptor(FXR)is widely accepted as a promising target for various liver diseases;however,panels of ligands in drug development show limited clinical benefits,without a clear mechanism.Here,we reveal that acetylation initiates and orchestrates FXR nucleocytoplasmic shuttling and then enhances degradation by the cytosolic E3 ligase CHIP under conditions of liver injury,which represents the major culprit that limits the clinical benefits of FXR agonists against liver diseases.Upon inflammatory and apoptotic stimulation,enhanced FXR acetylation at K217,closed to the nuclear location signal,blocks its recognition by importin KPNA3,thereby preventing its nuclear import.Concomitantly,reduced phosphorylation at T442 within the nuclear export signals promotes its recognition by exportin CRM1,and thereby facilitating FXR export to the cytosol.Acetylation governs nucleocytoplasmic shuttling of FXR,resulting in enhanced cytosolic retention of FXR that is amenable to degradation by CHIP.SIRT1 activators reduce FXR acetylation and prevent its cytosolic degradation.More importantly,SIRT1 activators synergize with FXR agonists in combating acute and chronic liver injuries.In conclusion,these findings innovate a promising strategy to develop therapeutics against liver diseases by combining SIRT1 activators and FXR agonists. 展开更多
关键词 FXR Nuclear receptor ACETYLATION PHOSPHORYLATION Nucleocytoplasmic shuttling DEGRADATION Nonalcoholic steatohepatitis Combinatorial drugs
原文传递
Chloride ion battery:A new emerged electrochemical system for next-generation energy storage
5
作者 Shulin Chen Lu Wu +3 位作者 Yu Liu Peng Zhou Qinyou An Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期154-168,I0004,共16页
In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy stora... In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy storage technologies,which show the potential in matching or even surpassing the current lithium metal batteries in terms of energy density,dendrite-free safety,and elimination of the dependence on the strained lithium and cobalt resources.However,the development of CIBs is still at the initial stage with unsatisfactory performance and several challenges have hindered them from reaching commercialization.In this review,we examine the current advances of CIBs by considering the electrode material design to the electrolyte,thus outlining the new opportunities of aqueous CIBs especially combined with desalination,chloride redox battery,etc.With respect to the developing road of lithium ion and fluoride ion batteries,the possibility of using solid-state chloride ion conductors to replace liquid electrolytes is tentatively discussed.Going beyond,perspectives and clear suggestions are concluded by highlighting the major obstacles and by prescribing specific research topics to inspire more efforts for CIBs in large-scale energy storage applications. 展开更多
关键词 Chloride ion battery Anion shuttling Conversion reaction Chloride redox
下载PDF
Lactate metabolism in neurodegenerative diseases 被引量:1
6
作者 Chaoguang Yang Rui-Yuan Pan +1 位作者 Fangxia Guan Zengqiang Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期69-74,共6页
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin... Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research. 展开更多
关键词 Alzheimer's disease Astrocyte-Neuron Lactate Shuttle brain central nervous system glucose metabolism GLYCOLYSIS NEUROINFLAMMATION Parkinson's disease protein lactylation signaling molecule
下载PDF
Nucieocytoplasmic Shuttling of Geminivirus C4 Protein Mediated by Phosphorylation and Myristoylation Is Critical for Viral Pathogenicity 被引量:6
7
作者 Yuzhen Mei Yaqin Wang +4 位作者 Tao Hu Xiuling Yang Rosa Lozano-Duran Garry Sunter Xueping Zhou 《Molecular Plant》 SCIE CAS CSCD 2018年第12期1466-1481,共16页
Many geminivirus C4 proteins induce severe developmental abnormalities in plants.We previously demon- strated that Tomato leaf curl Yunnan virus (TLCYnV)C4 induces plant developmental abnormalities at least partically... Many geminivirus C4 proteins induce severe developmental abnormalities in plants.We previously demon- strated that Tomato leaf curl Yunnan virus (TLCYnV)C4 induces plant developmental abnormalities at least partically by decreasing the accumulation of NbSKη,an ortholog of Arabidopsis BIN2 kinase involved in the brassinosteroid signaling pathway,in the nucleus through directing it to the plasma membrane.However, the molecular mechanism by which the membrane-associated C4 modifies the localization of NbSKη in the host cell remains unclear.Here,we show that TLCYnV C4 is a nucleocytoplasmic shuttle protein,and that C4 shuttling is accompanied by nuclear export of NbSKTI.TLCYnV C4 is phosphorylated by NbSKη in the nucleus,which promotes myristoylation of the viral protein.Myristoylation of phosphorylated C4 favors its interaction with exportin-α(XPO I);which in turn facilitates nuclear export of the C4/NbSKTI complex. Supporting this model,chemical inhibition of N-myristoyltransferases or exportin-α enhanced nuclear retention of C4,and mutations of the putative phosphorylation or myristoylation sites in C4 resulted in increased nuclear retention ofrC4 and thus decreased severity of C4-induced developmental abnormalities. The impact of C4 on development is also lessened when a nuclear localization signal or a nuclear export signal is added to its C-terminus,restricting it to a specific cellular niche and therefore impairing nucleocytoplasmic shuttling.Taken together,our results suggest that nucleocytoplasmic shuttling of TLCYnV C4,enabled by phosphorylation by NbSKη,myristoylation,and interaction with exportin-α is critical for its function as a pathogenicity factor. 展开更多
关键词 GEMINIVIRUS C4 PHOSPHORYLATION MYRISTOYLATION PATHOGENICITY nucleocytoplasmic shuttling
原文传递
Optically probing molecular shuttling motion of[2]rotaxane by a conformation-adaptive fluorophore 被引量:1
8
作者 Chengyuan Yu Xiaodong Wang +5 位作者 Cai-Xin Zhao Shun Yang Jiaan Gan Zhuo Wang Zhanqi Cao Da-Hui Qu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第11期4904-4907,共4页
A bistable[2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine(DPAC)unit was synthesized,which could be utilized to optical probe the molecular shuttling motion... A bistable[2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine(DPAC)unit was synthesized,which could be utilized to optical probe the molecular shuttling motion of the functionalized rotaxane system.The UV-vis,^(1) H NMR and PL spectroscopic data clearly demonstrated that the DPAC ring was interlocked onto the thread and the fluorescence intensity of the DPAC unit in the macrocycle was effectively regulated by the location change of the macrocycle along the thread under acid/base stimulation,which was attributed to the modulation of the intramolecular photo-induced electron transfer between the DPAC unit and the methyltriazole(MTA)unit.This bistable rotaxane system containing a conformation-adaptive fluorophore unit in the macrocycle moiety opens an alternative way to design functional bistable mechanically interlocked molecules. 展开更多
关键词 Rotaxane Optically probe Mechanical shuttling Molecular conformations Conformation-adaptive macrocycle
原文传递
Stereoblock Polypropylenes Prepared by Efficient Chain Shuttling Polymerization of Propylene with Binary Zirconium Catalysts and iBu3Al 被引量:1
9
作者 Xiao Yin Huan Gao +4 位作者 Fei Yang Li Pan Bin Wang Zhe Ma Yue-Sheng Li 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第11期1192-1201,I0006,共11页
Stereoblock polypropyienes bearing isotactic,atactic,and syndictactic polypropylene segments were successfully prepared by dry methylaluminoxane activated binary catalysts system,Ph2CFluCpZrCl2 and {Me2Si(2,5-Me2-3-(2... Stereoblock polypropyienes bearing isotactic,atactic,and syndictactic polypropylene segments were successfully prepared by dry methylaluminoxane activated binary catalysts system,Ph2CFluCpZrCl2 and {Me2Si(2,5-Me2-3-(2-MePh)-cyclopento[2,3-b]thiophen-6-yl)2}ZCl2,in the presence of iBu3Al as a chain shutting agent.by studying the catalyst activity,chain transfer efficiency,and reversility of chain transfer reaction of each catalyst system,as well as the molecular weight and polydispersity of the resulting polymers,the allyl exchange reactions between the zirconium catalyst and different main-group metal alky were estimated,respectvely.Based on the optimized react condition,the chain shuttling polymerization was conducted by binary catalyst system in the presence of iBu3Al under both atmospheric and high pressure.Resultant polymers were identified as stereoblock polypropylenes according to microstructure and physical properties analyses by 13C{1H}-NMR,DsC,and GPC. 展开更多
关键词 Stereoblock polypropylenes Chain shuttling polymerization Zirconium catalyst Chain transfer reaction
原文传递
Phosphorylated cellulose nanofibers establishing reliable ion-sieving barriers for durable lithium-sulfur batteries
10
作者 Zihao Li Pengsen Qian +3 位作者 Hongyang Li He Xiao Jun Chen Gaoran Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期619-628,共10页
The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineer... The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Cellulose Phosphorylation Ion-sieving Shuttle effect
下载PDF
Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries
11
作者 Jiayi Li Li Gao +7 位作者 Fengying Pan Cheng Gong Limeng Sun Hong Gao Jinqiang Zhang Yufei Zhao Guoxiu Wang Hao Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期187-221,共35页
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect... Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries. 展开更多
关键词 Shuttle effect Designed strategies Li-S battery Lithium polysulfides
下载PDF
Unraveling high efficiency multi-step sodium storage and bidirectional redox kinetics synergy mechanism of cobalt-doping vanadium disulfide anode
12
作者 Enzhi Li Mingshan Wang +10 位作者 Yuanlong Feng Lin Yang Qian Li Zhenliang Yang Junchen Chen Bo Yu Bingshu Guo Zhiyuan Ma Yun Huang Jiangtao Liu Xing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期148-157,共10页
Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)s... Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs. 展开更多
关键词 Sodium-ionbatteries Sodium-ion hybrid capacitors Pouch cells Vanadium disulfide Shuttle effect
下载PDF
NbN quantum dots anchored hollow carbon nanorods as efficient polysulfide immobilizer and lithium stabilizer for Li-S full batteries
13
作者 Fei Ma Zhuo Chen +9 位作者 Katam Srinivas Ziheng Zhang Yu Wu Dawei Liu Hesheng Yu Yue Wang Xinsheng Li Ming-qiang Zhu Qi Wu Yuanfu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期260-271,I0007,共13页
The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispers... The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode. 展开更多
关键词 Dual-functional host NbN quantum dots Shuttle effect Dendrite-free Li anode Li-S full batteries
下载PDF
Advanced preparation and application of bimetallic materials in lithium-sulfur batteries:A review
14
作者 Yongbing Jin Nanping Deng +4 位作者 Yanan Li Hao Wang Meiling Zhang Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期469-512,I0011,共45页
Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natu... Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs. 展开更多
关键词 Bimetallic materials Lithium-sulfur batteries Effectively suppress shuttle effect of LiPSs Significantly improve reaction kinetics Exceptionally long lifespan
下载PDF
Double-Doped Carbon-Based Electrodes with Nitrogen and Oxygen to Boost the Areal Capacity of Zinc-Bromine Flow Batteries
15
作者 Xiaoyun Sun Deren Wang +4 位作者 Haochen Hu Xin Wei Lin Meng Zhongshan Ren Sensen Li 《Transactions of Tianjin University》 EI CAS 2024年第1期74-89,共16页
Ensuring a stable power output from renewable energy sources,such as wind and solar energy,depends on the development of large-scale and long-duration energy storage devices.Zinc–bromine fl ow batteries(ZBFBs)have em... Ensuring a stable power output from renewable energy sources,such as wind and solar energy,depends on the development of large-scale and long-duration energy storage devices.Zinc–bromine fl ow batteries(ZBFBs)have emerged as cost-eff ective and high-energy-density solutions,replacing expensive all-vanadium fl ow batteries.However,uneven Zn deposition during charging results in the formation of problematic Zn dendrites,leading to mass transport polarization and self-discharge.Stable Zn plating and stripping are essential for the successful operation of high-areal-capacity ZBFBs.In this study,we successfully synthesized nitrogen and oxygen co-doped functional carbon felt(NOCF4)electrode through the oxidative polymerization of dopamine,followed by calcination under ambient conditions.The NOCF4 electrode eff ectively facilitates effi cient“shuttle deposition”of Zn during charging,signifi cantly enhancing the areal capacity of the electrode.Remarkably,ZBFBs utilizing NOCF4 as the anode material exhibited stable cycling performance for 40 cycles(approximately 240 h)at an areal capacity of 60 mA h/cm^(2).Even at a high areal capacity of 130 mA h/cm^(2),an impressive energy effi ciency of 76.98%was achieved.These fi ndings provide a promising pathway for the development of high-areal-capacity ZBFBs for advanced energy storage systems. 展开更多
关键词 Zinc-bromine fl ow batteries N O co-doping Areal capacity Shuttle deposition Zinc dendrite
下载PDF
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics
16
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 Li-S battery Shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure Built-in electric field
下载PDF
Analysis of Commuting Modal Shift in Consideration of Social Interaction of Consciousness for Environment
17
作者 Masashi Okushima 《Journal of Traffic and Transportation Engineering》 2024年第2期63-80,共18页
It is the matter for achievement of the low carbon transport system that the excessive use of private vehicles can be controlled appropriately.Not only improvement of service level of modes except private vehicle,but ... It is the matter for achievement of the low carbon transport system that the excessive use of private vehicles can be controlled appropriately.Not only improvement of service level of modes except private vehicle,but also consciousness for environmental problem of individual trip maker is important for eco-commuting promotion.On the other hand,consciousness for environment would be changed by influence of other person.Accordingly,it is aimed in the study that the structure of decision-making process for modal shift to the eco-commuting mode in the local city is described considering environmental consciousness and social interaction.For the purpose,the consciousness for the environment problem and the travel behavior of the commuter at the suburban area in the local city are investigated by the questionnaire survey.The covariance structure about the eco-consciousness is analyzed with the database of the questionnaire survey by structural equation modeling.As the result,it can be confirmed with the structural equation model that the individual environmental consciousness is strongly related with the intention of self-sacrifice and is influenced with the local interaction of the individual connections.On the other hand,the intention of modal shift for the commuting mode is analyzed with the database of the questionnaire survey.It can be found out that the environmental consciousness is not statistically significant for commuting mode choice with the present poor level of service of public transport.However,the intention of self-sacrifice for the prevention of the global warming is statistically confirmed as the factor of modal shift with the operation of eco-commuting bus service with the RP/SP integrated estimation method.As the result,the multi-agent simulation system with social interaction model for eco consciousness is developed to measure the effect of the eco-commuting promotion.For the purpose,the carbon dioxide emission is estimated based on traffic demand and road network condition in the traffic environment model.On the other hand,the relation between agents is defined based on the small world network.The proposed multi-agent simulation is applied to measure the effect of the eco-commuting promotion such as improvement of level of service on the public transport or education of eco-consciousness.The effect of the promotion plan can be observed with the proposed multi-agent system.Finally,it can be concluded that the proposed multi-agent simulation with social interaction for eco-consciousness is useful for planning of eco-commuting promotion. 展开更多
关键词 Greenhouse gas emission modal shift structural equation model RP/SP combined estimation multi-agent simulation local interaction small world network consciousness for environment commuting shuttle bus local city
下载PDF
Integrated host configuration of flexibly fibrous skeleton towards efficient polysulfide conversion and dendrite-free behavior in stable lithium-sulfur pouch cells
18
作者 Tongtao Wan Yusen He +3 位作者 Zongke He Wenjia Han Yongguang Zhang Guihua Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期43-52,I0003,共11页
The commercialization of lithium-sulfur(Li-S) batteries is obstructed by the sluggish sulfur electrochemical reaction,severe polysulfide shuttling effect,and damaging dendritic lithium growth.Herein,a threedimensional... The commercialization of lithium-sulfur(Li-S) batteries is obstructed by the sluggish sulfur electrochemical reaction,severe polysulfide shuttling effect,and damaging dendritic lithium growth.Herein,a threedimensional(3D) conductive carbon nanofibers skeleton-based bifunctional electrode host material is fabricated,which consists of a two-dimensional(2D) ultra-thin NiSe_(2)-CoSe_(2)heterostructured nanosheet built on one-dimensional(1D) carbon nanofibers(NiSe_(2)-CoSe_(2)@CNF).When serving as cathodic host,the heterostructured NiSe_(2)-CoSe_(2)@CNF offers a synergistic function of polysulfide confinement and catalysis conversion.The S/NiSe_(2)-CoSe_(2)@CNF cathode shows outstanding cycling stability of 0.03% capacity decay rate per cycle over 500 cycles at 1 C.As anodic host,the NiSe_(2)-CoSe_(2)@CNF with high-flux Li+diffusion property and good lithiophilic capability realizes dendrite-free Li plating/stripping behavior.Benefiting from these synergistically merits,the Li-S full cell with S/NiSe_(2)-CoSe_(2)@CNFILi/NiSe_(2)-CoSe_(2)@CNF electrodes exhibits excellent electrochemical performance including a high specific capacity of1021 mA h g^(-1)over 100 cycles at 0.2 C and reversible areal capacity of 3.05 mA h cm^(-2)under a high sulfur loading of 4.33 mg cm^(-2)at 0.1 C.The pouch cell also delivers ultra-stable Li/S electrochemistry.This study demonstrates a rational and universal electrode construction strategy for developing practical and high-energy Li-S batteries. 展开更多
关键词 Polysulfides shuttling Lithiumdendrites Catalyticconversion NiSe_(2)-CoSe_(2)heterostructure Pouchcell
下载PDF
Rationalizing the impact of oxygen vacancy on polysulfide conversion kinetics for highly efficient lithium-sulfur batteries 被引量:2
19
作者 Ya Song Huan Li +3 位作者 Junfeng Li Jinyu An Jiao-Jing Shao Guangmin Zhou 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期51-60,I0003,共11页
The“shuttle effect”of lithium polysulfides(LiPSs)is a huge challenge for practical use of high-energydensity lithium-sulfur(Li-S)batteries,and one of the main reasons is the sluggish kinetics of sulfur conversion.Me... The“shuttle effect”of lithium polysulfides(LiPSs)is a huge challenge for practical use of high-energydensity lithium-sulfur(Li-S)batteries,and one of the main reasons is the sluggish kinetics of sulfur conversion.Metal oxides are able to expedite the sulfur electrochemistry,and the structural defects enhance the adsorption-conversion ability of metal oxides for polysulfides.However,a significant research gap still remains regarding the relationship between the oxygen vacancy concentration and the adsorptivecatalytic performance of metal oxides.Herein,we establish a correlation between oxygen vacancy concentration and adsorptive-catalytic properties by using tungsten oxide(WO_(x))as model catalysts.It is revealed that high-concentration oxygen vacancy is beneficial for enhancing the binding between tungsten oxide and LiPSs,reducing the energy barrier of Li_(2)S decomposition,and promoting polysulfide conversion kinetics.Consequently,the Li-S batteries using the tungsten oxide with high-concentration oxygen vacancies deliver high initial discharge capacity of 1169 mA h g^(-1)at 0.2 C and 865 mA h g^(-1)at 2 C,low attenuation rate of 0.064%per cycle over 1100 cycles at 2 C.With a high sulfur area loading of 5.34 mg cm^(-2),the Li-S batteries still exhibit high initial gravimetric capacity of 982 mA h g^(-1)at 0.1 C and areal capacity of 5.92 mA h cm^(-2).This work promotes the feasibility of defect engineering on metal oxides as an effective mean to enhance the practicality of Li-S batteries. 展开更多
关键词 Shuttl eeffect Oxygen vacancy INTERLAYER Lithium-sulfur batteries
下载PDF
Effects of Catalysis and Separator Functionalization on High-Energy Lithium–Sulfur Batteries:A Complete Review 被引量:2
20
作者 Muhammad Kashif Aslam Sidra Jamil +1 位作者 Shahid Hussain Maowen Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期333-355,共23页
Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising nex... Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising next-generation rechargeable energy storage devices.However,the“shuttle effect”of polysulfide results in the passivation of metal lithium anode,the decrease of battery capacity and coulombic efficiency,and the deterioration of cycle stability.To realize the commercialization of Li-S batteries,its serious“shuttle effect”needs to be suppress.The commercial separators are ineffective to suppress this effect because of its large pore size.Therefore,it is an effective strategy to modify the separator surface and introduce functional modified layer.In addition to the blocking strategy,the catalysis of polysulfide conversion reaction is also an important factor hindering the migration of polysulfides.In this review,the principles of separator modification,functionalization,and catalysis in Li-S batteries are reviewed.Furthermore,the research trend of separator functionalization and polysulfide catalysis in the future is prospected. 展开更多
关键词 CATALYSIS Li-S batteries POLYSULFIDES separator functionalization shuttle effect
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部