In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t...In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.展开更多
Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing...Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing to the abundance and even distribution of Na resources in the crust,and the predicted low cost of the technique.Nevertheless,SIBs still face challenges like lower energy density and inferior cycling stability compared to mature lithium-ion batteries(LIBs).Enhancing the electrochemical performance of SIBs requires an in-deep and comprehensive understanding of the improvement strategies and the underlying reaction mechanism elucidated by in situ techniques.In this review,commonly applied in situ techniques,for instance,transmission electron microscopy(TEM),Raman spectroscopy,X-ray diffraction(XRD),and X-ray absorption near-edge structure(XANES),and their applications on the representative cathode and anode materials with selected samples are summarized.We discuss the merits and demerits of each type of material,strategies to enhance their electrochemical performance,and the applications of in situ characterizations of them during the de/sodiation process to reveal the underlying reaction mechanism for performance improvement.We aim to elucidate the composition/structure-per formance relationship to provide guidelines for rational design and preparation of electrode materials toward high electrochemical performance.展开更多
The modeling ability of a stand-alone version of the Simple Biosphere Model 2(SiB2) was tested mainly through diagnosing the simulated latent heat(LE),sensible heat(H),CO2 flux,and air temperature at the Tongyu ...The modeling ability of a stand-alone version of the Simple Biosphere Model 2(SiB2) was tested mainly through diagnosing the simulated latent heat(LE),sensible heat(H),CO2 flux,and air temperature at the Tongyu field observation station(44°25'N,122°52'E,184 m elevation) of Coordinated Enhanced Observing Period(CEOP),where the land cover is cropland and grassland.In the whole year of 2003,the canopy height and the leaf area index was variable.During non-growth period,the surface would become bare,while during the growth period,the canopy height could reach 2.0 m high over cropland and 0.8 m high over grassland,respectively,and max leaf area index could reach 4.2 and 2.4,respectively.The model was initialized with measurement and driven by half-hourly atmospheric observations.The simulation values for 2003 were compared against measurements.Results show that the model is of a good ability of simulating the hourly latent heat(LE),sensible heat(H),CO2 flux and temperature during the growth period.Moreover,the daily LE,H and CO2 flux simulated by SiB2 could reflect their yearly change reasonably.However,the model may overestimate the H generally.展开更多
SiB2(simple biosphere model Version 2)是用来模拟生态系统通量较为理想的国外模型,为了探讨其在我国黄河灌区的适用性及利用遥感数据驱动模型的可行性,并用其来研究该地区农田能量收支情况,以位山灌区为研究试点,利用位山实验站1a左...SiB2(simple biosphere model Version 2)是用来模拟生态系统通量较为理想的国外模型,为了探讨其在我国黄河灌区的适用性及利用遥感数据驱动模型的可行性,并用其来研究该地区农田能量收支情况,以位山灌区为研究试点,利用位山实验站1a左右的观测数据对模型进行了验证分析,模拟结果表明:SiB2模型能够较好地模拟位山试验站农田的能量通量、CO2通量及地表温度,净辐射、潜热通量、感热通量、CO2通量与地表温度的模拟值与观测值吻合较好,线性相关系数R分别为0.988,0.714,0.607,0.677与0.933,其中净辐射模拟效果最好,感热通量偏差较大。另外,利用遥感MODIS LAI数据驱动SiB2模型表明,除净辐射外,模拟效果很差,因此在站点尺度遥感LAI(叶面积指数,leaf area index)产品不适合驱动SiB2模型。展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2022R1C1C1011058)。
文摘In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.
基金supported by the National Natural Science Foundation of China(22005130,21925404,21902137,21991151,and 22021001)the National Key Research and Development Program of China(2019YFA0705400 and 2020YFB1505800)the Natural Science Foundation of Fujian Province of China(2021J01988)。
文摘Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing to the abundance and even distribution of Na resources in the crust,and the predicted low cost of the technique.Nevertheless,SIBs still face challenges like lower energy density and inferior cycling stability compared to mature lithium-ion batteries(LIBs).Enhancing the electrochemical performance of SIBs requires an in-deep and comprehensive understanding of the improvement strategies and the underlying reaction mechanism elucidated by in situ techniques.In this review,commonly applied in situ techniques,for instance,transmission electron microscopy(TEM),Raman spectroscopy,X-ray diffraction(XRD),and X-ray absorption near-edge structure(XANES),and their applications on the representative cathode and anode materials with selected samples are summarized.We discuss the merits and demerits of each type of material,strategies to enhance their electrochemical performance,and the applications of in situ characterizations of them during the de/sodiation process to reveal the underlying reaction mechanism for performance improvement.We aim to elucidate the composition/structure-per formance relationship to provide guidelines for rational design and preparation of electrode materials toward high electrochemical performance.
基金supported by the National Basic Research Program of China (2006CB400506)
文摘The modeling ability of a stand-alone version of the Simple Biosphere Model 2(SiB2) was tested mainly through diagnosing the simulated latent heat(LE),sensible heat(H),CO2 flux,and air temperature at the Tongyu field observation station(44°25'N,122°52'E,184 m elevation) of Coordinated Enhanced Observing Period(CEOP),where the land cover is cropland and grassland.In the whole year of 2003,the canopy height and the leaf area index was variable.During non-growth period,the surface would become bare,while during the growth period,the canopy height could reach 2.0 m high over cropland and 0.8 m high over grassland,respectively,and max leaf area index could reach 4.2 and 2.4,respectively.The model was initialized with measurement and driven by half-hourly atmospheric observations.The simulation values for 2003 were compared against measurements.Results show that the model is of a good ability of simulating the hourly latent heat(LE),sensible heat(H),CO2 flux and temperature during the growth period.Moreover,the daily LE,H and CO2 flux simulated by SiB2 could reflect their yearly change reasonably.However,the model may overestimate the H generally.
文摘SiB2(simple biosphere model Version 2)是用来模拟生态系统通量较为理想的国外模型,为了探讨其在我国黄河灌区的适用性及利用遥感数据驱动模型的可行性,并用其来研究该地区农田能量收支情况,以位山灌区为研究试点,利用位山实验站1a左右的观测数据对模型进行了验证分析,模拟结果表明:SiB2模型能够较好地模拟位山试验站农田的能量通量、CO2通量及地表温度,净辐射、潜热通量、感热通量、CO2通量与地表温度的模拟值与观测值吻合较好,线性相关系数R分别为0.988,0.714,0.607,0.677与0.933,其中净辐射模拟效果最好,感热通量偏差较大。另外,利用遥感MODIS LAI数据驱动SiB2模型表明,除净辐射外,模拟效果很差,因此在站点尺度遥感LAI(叶面积指数,leaf area index)产品不适合驱动SiB2模型。