Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and...Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and their possible structures were discussed.The results indicated that C60 is very reactive to electrophiles in the gas phase.展开更多
BACKGROUND AND OBJECTIVE Non-invasive brain stimulation ( NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown e...BACKGROUND AND OBJECTIVE Non-invasive brain stimulation ( NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown exponentially within the last decade with promising results across a variety of clinical and healthy populations. However, recent work has shown high inter-individual variability and a lack of reproducibility of previous results. Here, we conducted a small preliminary study to explore the effects of three of the most commonly used excitatory NIBS paradigms over the primary motor cortex (Ml) on motor learning ( Sequential Visuomotor Isometric Pinch Force Tracking Task) and secondarily relate changes in motor learning to changes in cortical excitability ( MEP amplitude and SICI).展开更多
文摘Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and their possible structures were discussed.The results indicated that C60 is very reactive to electrophiles in the gas phase.
文摘BACKGROUND AND OBJECTIVE Non-invasive brain stimulation ( NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown exponentially within the last decade with promising results across a variety of clinical and healthy populations. However, recent work has shown high inter-individual variability and a lack of reproducibility of previous results. Here, we conducted a small preliminary study to explore the effects of three of the most commonly used excitatory NIBS paradigms over the primary motor cortex (Ml) on motor learning ( Sequential Visuomotor Isometric Pinch Force Tracking Task) and secondarily relate changes in motor learning to changes in cortical excitability ( MEP amplitude and SICI).