针对实时性要求中SIFT特征配准算法耗时长的缺点,本文将SURF(Speeded Up Robust Feature,即加速鲁棒特征)算法应用于无人机航空图像的自动配准问题中。首先利用Hessian检测子检测特征点,再通过粗匹配和细匹配得到匹配点对,最后执行几何...针对实时性要求中SIFT特征配准算法耗时长的缺点,本文将SURF(Speeded Up Robust Feature,即加速鲁棒特征)算法应用于无人机航空图像的自动配准问题中。首先利用Hessian检测子检测特征点,再通过粗匹配和细匹配得到匹配点对,最后执行几何变换完成对图像的配准。通过与SIFT(Scale Invariant Feature Transform,即尺度不变特征变换)配准方法进行对比,结果表明SURF算法在满足精度的前提下具有比SIFT算法计算量小、速度快的优点,有一定的理论和应用价值。展开更多