将Bag of Features算法引入汽车图像识别领域中,并提出了将DoG(Difference of Gaussian)特征提取算法和PLSA分类算法结合在一起实现车辆和背景图像分类。首先用DoG特征提取算法提取图像特征,用这些特征聚类产生码书并对图像进行柱状图描...将Bag of Features算法引入汽车图像识别领域中,并提出了将DoG(Difference of Gaussian)特征提取算法和PLSA分类算法结合在一起实现车辆和背景图像分类。首先用DoG特征提取算法提取图像特征,用这些特征聚类产生码书并对图像进行柱状图描述,最后设计PLSA分类器对车辆图像和背景图像进行分类。实验对比了该算法与Tamura纹理特征算法和Gabor纹理特征算法在车辆图像识别中的效果。结果表明本文算法分类正确率优于另外两种方法。展开更多
文摘将Bag of Features算法引入汽车图像识别领域中,并提出了将DoG(Difference of Gaussian)特征提取算法和PLSA分类算法结合在一起实现车辆和背景图像分类。首先用DoG特征提取算法提取图像特征,用这些特征聚类产生码书并对图像进行柱状图描述,最后设计PLSA分类器对车辆图像和背景图像进行分类。实验对比了该算法与Tamura纹理特征算法和Gabor纹理特征算法在车辆图像识别中的效果。结果表明本文算法分类正确率优于另外两种方法。