This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fraction...This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fractional order proportional integral and derivative controller(FOPID), integer order proportional integral and derivative controller(IOPID)and the Skogestad internal model control controller(SIMC). The factors assumed in experiment are the presence of random noise,external disturbances in the system input and variable load. As output variables, the experimental design employs the system step response and the controller action. Practical implementation of FOPID and IOPID controllers uses the MATLAB stateflow toolbox and a NI data acquisition system. Results of the robustness analysis show that the FOPID controller has a better performance and robust stability against the experiment factors.展开更多
文摘This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fractional order proportional integral and derivative controller(FOPID), integer order proportional integral and derivative controller(IOPID)and the Skogestad internal model control controller(SIMC). The factors assumed in experiment are the presence of random noise,external disturbances in the system input and variable load. As output variables, the experimental design employs the system step response and the controller action. Practical implementation of FOPID and IOPID controllers uses the MATLAB stateflow toolbox and a NI data acquisition system. Results of the robustness analysis show that the FOPID controller has a better performance and robust stability against the experiment factors.