The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupl...The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupled with transient heat transfer. This paper presents a full 3D non-isothermal two-phase flow model to predict the complex flow in melt filling process, where the Cross-WLF model is applied to characterize the rheological behav- ior of polymer melt. The governing equations are solved using finite volume method with SIMPLEC algorithm on collocated grids and the melt front is accurately captured by a high resolution level set method. A domain exten- sion technique is adopted to deal with the complex cavities, which greatly reduces the computational burden. To verify the validity of the developed 3D approach, the melts filling processes in two thin rectangular cavities (one of them with a cylindrical insert) are simulated. The predicted melt front interfaces are in good agreement with the experiment and commercial software prediction. For a case with a rather complex cavity, the dynamic filling process in a hemispherical shell is successfully simulated. All of the numerical results show that the developed numerical procedure can provide a reasonable orediction for injection molding process.展开更多
The blade tip clearance flow in axial-flow pump is simulated based on three-dimensional N-S equations, RNG k -e turbulence model, and SIMPLEC algorithm. It shows that numerical results agree well with experiment data ...The blade tip clearance flow in axial-flow pump is simulated based on three-dimensional N-S equations, RNG k -e turbulence model, and SIMPLEC algorithm. It shows that numerical results agree well with experiment data measured by 5-hole probe through validation. Flow fields at the blade tip and velocity distribution at the exit of rotor are analyzed in detail. The numerical results show that the increase in tip clearance reduces hydro-head, especially at small flow rate. Experiment equipment is also introduced.展开更多
基金Supported by the National Basic Research Program of China(2012CB025903)the National Natural Science Foundation of China(91434201,11402210)
文摘The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupled with transient heat transfer. This paper presents a full 3D non-isothermal two-phase flow model to predict the complex flow in melt filling process, where the Cross-WLF model is applied to characterize the rheological behav- ior of polymer melt. The governing equations are solved using finite volume method with SIMPLEC algorithm on collocated grids and the melt front is accurately captured by a high resolution level set method. A domain exten- sion technique is adopted to deal with the complex cavities, which greatly reduces the computational burden. To verify the validity of the developed 3D approach, the melts filling processes in two thin rectangular cavities (one of them with a cylindrical insert) are simulated. The predicted melt front interfaces are in good agreement with the experiment and commercial software prediction. For a case with a rather complex cavity, the dynamic filling process in a hemispherical shell is successfully simulated. All of the numerical results show that the developed numerical procedure can provide a reasonable orediction for injection molding process.
文摘The blade tip clearance flow in axial-flow pump is simulated based on three-dimensional N-S equations, RNG k -e turbulence model, and SIMPLEC algorithm. It shows that numerical results agree well with experiment data measured by 5-hole probe through validation. Flow fields at the blade tip and velocity distribution at the exit of rotor are analyzed in detail. The numerical results show that the increase in tip clearance reduces hydro-head, especially at small flow rate. Experiment equipment is also introduced.