In view of the pressure time of emergency rescue against the infectious diseases,a mathematical model to optimize the location of emergency rescue centers is proposed.The model takes full account of the spread functio...In view of the pressure time of emergency rescue against the infectious diseases,a mathematical model to optimize the location of emergency rescue centers is proposed.The model takes full account of the spread function of infectious diseases,the cycle of pulse vaccination,the distance between the demand area and the emergency rescue centers,as well as the building and maintenance cost for the emergency rescue center,and so on.At the same time,the model integrates the traditional location selection models which are the biggest cover model,the p-center model and the p-median model,and it embodies the principles of fairness and efficiency for the emergency center location.Finally,a computation of an example arising from practice provides satisfactory results.展开更多
In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no end...In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.展开更多
In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch in...In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].展开更多
In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By u...In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.展开更多
This paper presents a restricted SIRmathematicalmodel to analyze the evolution of a contagious infectious disease outbreak(COVID-19)using available data.The new model focuses on two main concepts:first,it can present ...This paper presents a restricted SIRmathematicalmodel to analyze the evolution of a contagious infectious disease outbreak(COVID-19)using available data.The new model focuses on two main concepts:first,it can present multiple waves of the disease,and second,it analyzes how far an infection can be eradicated with the help of vaccination.The stability analysis of the equilibrium points for the suggested model is initially investigated by identifying the matching equilibrium points and examining their stability.The basic reproduction number is calculated,and the positivity of the solutions is established.Numerical simulations are performed to determine if it is multipeak and evaluate vaccination’s effects.In addition,the proposed model is compared to the literature already published and the effectiveness of vaccination has been recorded.展开更多
The paper establishes two stochastic SIRS models with jumps to describe the spread of network virus by cyber war, terrorism and others. First, adding random perturbations proportionally to each variable, we get the dy...The paper establishes two stochastic SIRS models with jumps to describe the spread of network virus by cyber war, terrorism and others. First, adding random perturbations proportionally to each variable, we get the dynamic properties around the positive equilibrium of the deterministic model and the conditions for persistence and extinction. Second, giving a random disturbance to endemic equilibrium, we get a stochastic system with jumps. By modifying the existing Lyapunov function, we prove the positive solution of the system is stochastically stable.展开更多
This paper is concerned with the spatial propagation of an SIR epidemic model with nonlocal diffusion and free boundaries describing the evolution of a disease.This model can be viewed as a nonlocal version of the fre...This paper is concerned with the spatial propagation of an SIR epidemic model with nonlocal diffusion and free boundaries describing the evolution of a disease.This model can be viewed as a nonlocal version of the free boundary problem studied by Kim et al.(An SIR epidemic model with free boundary.Nonlinear Anal RWA,2013,14:1992-2001).We first prove that this problem has a unique solution defined for all time,and then we give sufficient conditions for the disease vanishing and spreading.Our result shows that the disease will not spread if the basic reproduction number R_(0)<1,or the initial infected area h_(0),expanding ability μ and the initial datum S_(0) are all small enough when 1<R_(0)<1+d/μ_(2)+α.Furthermore,we show that if 1<R_(0)<1+d/μ_(2)+α,the disease will spread when h_(0) is large enough or h_(0) is small but μ is large enough.It is expected that the disease will always spread when R_(0)≥1+d/μ_(2)+α which is different from the local model.展开更多
A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ulti...A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ultimate boundedness of the solution of the model was obtained by using the method of Lyapunov function and the generalized Ito's formula. At last,asymptotic behaviors of the solution were discussed according to the value of R0. If R0< 1,the solution of the model oscillates around a steady state, which is the diseases free equilibrium of the corresponding deterministic model,and if R0> 1,it fluctuates around the endemic equilibrium of the deterministic model.展开更多
In a polluted environment, considering the biological population infected with a kind of disease and hunted by human beings, we formulate a nonautonomous SIR population-epidemic model with time-varying impulsive relea...In a polluted environment, considering the biological population infected with a kind of disease and hunted by human beings, we formulate a nonautonomous SIR population-epidemic model with time-varying impulsive release and general nonlinear incidence rate and investigate dynamical behaviors of the model. Under the reasonable assumptions, the sufficient conditions which guarantee the globally attractive of the disease-free periodic solution and the permanence of the infected fish are established, that is, the infected fish dies out if , whereas the disease persists if . To substantiate our theoretical results, extensive numerical simulations are performed for a hypothetical set of parameter values.展开更多
In this paper, we investigate the dynamic properties of an SIR epidemic model with saturated growth rate. Under the conditions of an arbitrary initial value, we prove that the system exists unique positive solution, a...In this paper, we investigate the dynamic properties of an SIR epidemic model with saturated growth rate. Under the conditions of an arbitrary initial value, we prove that the system exists unique positive solution, and give the sufficient conditions caused by random environmental factors leading to the extinction of infectious diseases. Moreover, we verify the conditions for the persistence of infectious diseases in the mean sense. Finally, we provide the biology interpretation and some strategies to control the infectious diseases.展开更多
Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.T...Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.展开更多
This paper is concerned with a delayed SIRS epidemic model with a nonlinear incidence rate. The main results are given in terms of local stability and Hopf bifurcation. Sufficient conditions for the local stability of...This paper is concerned with a delayed SIRS epidemic model with a nonlinear incidence rate. The main results are given in terms of local stability and Hopf bifurcation. Sufficient conditions for the local stability of the positive equilibrium and existence of Hopf bifurcation are obtained by regarding the time delay as the bifurcation parameter. Further,the properties of Hopf bifurcation such as the direction and stability are investigated by using the normal form theory and center manifold argument. Finally,some numerical simulations are presented to verify the theoretical analysis.展开更多
A detailed analysis was carried out on global asymptotic behavior of a kind of stochastic SIRS(susceptible-infective-removed-susceptible)model.This model has been obtained by introducing stochasticity into the origina...A detailed analysis was carried out on global asymptotic behavior of a kind of stochastic SIRS(susceptible-infective-removed-susceptible)model.This model has been obtained by introducing stochasticity into the original deterministic SIRS model via the technique of parameter perturbation which is standard in stochastic population modeling.By making corresponding Lyapunov function and using It formula,the condition for the solution of the model tending to the disease free equilibrium asymptotically was obtained.Under this condition,the epidemics will die out as time goes by.Based on this,almost surely exponential stability was analyzed.展开更多
In this study, the mathematical SIR model (Susceptible-Infected-Recovered (cured and deceased)) was applied to the case of Senegal during the first two waves of the COVID-19 pandemic. During this period, from March 1,...In this study, the mathematical SIR model (Susceptible-Infected-Recovered (cured and deceased)) was applied to the case of Senegal during the first two waves of the COVID-19 pandemic. During this period, from March 1, 2020, to March 30, 2021, the transmission and recovery rates as well as the number of reproduction were calculated and analyzed for the impact of the decisions taken by the Senegalese government. In both waves, the variation of the basic reproduction number as a function of time, with values below one towards the end of each study period, confirms the success of the Senegalese government in controlling the epidemic. The results show that the solution of mandatory mask-wearing is the best decision to counter the spread of the disease. Indeed, the mean number of reproduction is 2.11 in the first wave, and the second wave has a lower mean value of 1.23, while the decisions are less restrictive during this latter wave. Also, a short-term prediction model (about 4 months) was validated on the second wave. The validation criteria of this model reveal a good match between the results of the simulated model and the COVID-19 data reported via the Ministry of Health, Solidarity, and Social Action of Senegal.展开更多
A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a uni...A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a unique global positive solution;(2) the results reveal that the solution of this epidemic model will be stochastically ultimately bounded,and the non-linear SDE admits a unique stationary distribution under certain parametric conditions;(3) the coefficients play an important role in the extinction of the diseases.展开更多
In this paper we provide different types of approach in mathematical biology about infection disease and understanding the dynamic of epidemic mathematical models specially in COVID-19 disease which first outbroke in ...In this paper we provide different types of approach in mathematical biology about infection disease and understanding the dynamic of epidemic mathematical models specially in COVID-19 disease which first outbroke in China and fast spread around the world. We work in the connection between the mathematical models and the solution analytically and numerically. At first, we emphasize the Susceptible-Infectious-Recovered (SIR) models’ extension for policy significance. Then, we found the improved SIER model done by research. In third section, we examine the improved model when an appropriate vaccine has been found, we introduce the model of SIR with vaccine term which ends up with discussion and conclusion about the effect of vaccinate. The comprehension of COVID-19 transmission methods, structures, and characteristics is greatly aided by these mathematical models analytically and numerically.展开更多
In the context of the COVID-19 sweeping the world,countries around the globe have adopted different approaches to control the spread of disease,and in order to find better control methods,this paper explores the influ...In the context of the COVID-19 sweeping the world,countries around the globe have adopted different approaches to control the spread of disease,and in order to find better control methods,this paper explores the influence of people’s awareness on SIR model.On the basis of the SIR model,this paper studies the SEIR model with the exposure period parameter,calculates the feasible region R-naught disease-free point,and analyzes the method of controlling the spread of the disease according to R-naught,which shows that lockdown has a significant effect on the control of COVID-19.In addition,this paper also established a model affected by disease awareness,adding a factor of news media and religious awareness.The feasible region is calculated,and the reality situation based on India is analyzed.The conclusion proved that people’s awareness has a greater influence on the spread of diseases.展开更多
The SIR(D) epidemiological model is defined through a system of transcendental equations, not solvable by elementary functions. In the present paper those equations are successfully replaced by approximate ones, whose...The SIR(D) epidemiological model is defined through a system of transcendental equations, not solvable by elementary functions. In the present paper those equations are successfully replaced by approximate ones, whose solutions are given explicitly in terms of elementary functions, originating, piece-wisely, from generalized logistic functions: they ensure <em>exact</em> (in the numerical sense) asymptotic values, besides to be quite practical to use, for example with fit to data algorithms;moreover they unveil a useful feature, that in fact, at least with very strict approximation, is also owned by the (numerical) solutions of the <em>exact</em> equations. The novelties in the work are: the way the approximate equations are obtained, using simple, analytic geometry considerations;the easy and practical formulation of the final approximate solutions;the mentioned useful feature, never disclosed before. The work’s method and result prove to be robust over a range of values of the well known non-dimensional parameter called <em>basic reproduction ratio</em>, that covers at least all the known epidemic cases, from influenza to measles: this is a point which doesn’t appear much discussed in analogous works.展开更多
We establish a stochastic differential equation epidemic model of multi-group SIR type based on the deterministic multi-group SIR mode. Then, we define the basic reproduction number R0^S and show that it is a sharp th...We establish a stochastic differential equation epidemic model of multi-group SIR type based on the deterministic multi-group SIR mode. Then, we define the basic reproduction number R0^S and show that it is a sharp threshold for the dynamic of the stochastic multi-group SIR model. More specially, if R0^S 〈 1, then the disease-free equilibrium will be asymptotically stable which means the disease will die out, if R0^S 〉 1, the disease-free equilibrium will unstable, and our model will positively recurrence to a positive domain which implies the persistence of our model. Numerical simulation examples are carried out to substantiate the analytical results.展开更多
Based on the mechanism of prevention and control of infectious disease, we propose, in this paper, an SIRS epidemic model with varying total population size and state-dependent control, where the fraction of susceptib...Based on the mechanism of prevention and control of infectious disease, we propose, in this paper, an SIRS epidemic model with varying total population size and state-dependent control, where the fraction of susceptible individuals in population is as the detection threshold value. By the Poincaré map, theory of differential inequalities and differential equation geometry, the existence and orbital stability of the disease-free periodic solution are discussed. Theoretical results show that by state-dependent pulse vaccination we can make the proportion of infected individuals tend to zero, and control the transmission of disease in population.展开更多
基金The National Natural Science Foundation of China(No.70671021)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘In view of the pressure time of emergency rescue against the infectious diseases,a mathematical model to optimize the location of emergency rescue centers is proposed.The model takes full account of the spread function of infectious diseases,the cycle of pulse vaccination,the distance between the demand area and the emergency rescue centers,as well as the building and maintenance cost for the emergency rescue center,and so on.At the same time,the model integrates the traditional location selection models which are the biggest cover model,the p-center model and the p-median model,and it embodies the principles of fairness and efficiency for the emergency center location.Finally,a computation of an example arising from practice provides satisfactory results.
基金This work is supported by the National Sciences Foundation of China (10471040)the Youth Science Foundations of Shanxi Province (20021003).
文摘In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.
基金supported by Japan Society for the Promotion of Science (Grant Scientific Research (c), No. 24540219 to the first author, JSPS Fellows, No.237213 to the second author, and No. 222176 to the third author)
文摘In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].
基金supported in part by JSPS Fellows,No.237213 of Japan Society for the Promotion of Science to the first authorthe Grant MTM2010-18318 of the MICINN,Spanish Ministry of Science and Innovation to the second authorScientific Research (c),No.21540230 of Japan Society for the Promotion of Science to the third author
文摘In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.
基金Research Partnership Program no.RP-21-09-06 from the Deanship of Scientific Research of Imam Mohammad Ibn Saud Islamic University(IMSIU).
文摘This paper presents a restricted SIRmathematicalmodel to analyze the evolution of a contagious infectious disease outbreak(COVID-19)using available data.The new model focuses on two main concepts:first,it can present multiple waves of the disease,and second,it analyzes how far an infection can be eradicated with the help of vaccination.The stability analysis of the equilibrium points for the suggested model is initially investigated by identifying the matching equilibrium points and examining their stability.The basic reproduction number is calculated,and the positivity of the solutions is established.Numerical simulations are performed to determine if it is multipeak and evaluate vaccination’s effects.In addition,the proposed model is compared to the literature already published and the effectiveness of vaccination has been recorded.
基金partially supported by the Natural Science Foundation of Heilongjiang Province(A201420)Educational Reform Project of Heilongjiang Province(JG2013010482)+1 种基金Foundation of Heilongjiang Province Educational Committee(12541696)the Natural Science Foundation of China(11401136,11301112,11301207,11501148)
文摘The paper establishes two stochastic SIRS models with jumps to describe the spread of network virus by cyber war, terrorism and others. First, adding random perturbations proportionally to each variable, we get the dynamic properties around the positive equilibrium of the deterministic model and the conditions for persistence and extinction. Second, giving a random disturbance to endemic equilibrium, we get a stochastic system with jumps. By modifying the existing Lyapunov function, we prove the positive solution of the system is stochastically stable.
基金Zhao was supported by a scholarship from the China Scholarship Council,Li was partially supported by NSF of China(11731005)Cao was partially supported by NSF of China(11901264).
文摘This paper is concerned with the spatial propagation of an SIR epidemic model with nonlocal diffusion and free boundaries describing the evolution of a disease.This model can be viewed as a nonlocal version of the free boundary problem studied by Kim et al.(An SIR epidemic model with free boundary.Nonlinear Anal RWA,2013,14:1992-2001).We first prove that this problem has a unique solution defined for all time,and then we give sufficient conditions for the disease vanishing and spreading.Our result shows that the disease will not spread if the basic reproduction number R_(0)<1,or the initial infected area h_(0),expanding ability μ and the initial datum S_(0) are all small enough when 1<R_(0)<1+d/μ_(2)+α.Furthermore,we show that if 1<R_(0)<1+d/μ_(2)+α,the disease will spread when h_(0) is large enough or h_(0) is small but μ is large enough.It is expected that the disease will always spread when R_(0)≥1+d/μ_(2)+α which is different from the local model.
基金National Natural Science Foundations of China(No.11071259,No.11371374)Research Fund for the Doctoral Program of Higher Education of China(No.20110162110060)
文摘A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ultimate boundedness of the solution of the model was obtained by using the method of Lyapunov function and the generalized Ito's formula. At last,asymptotic behaviors of the solution were discussed according to the value of R0. If R0< 1,the solution of the model oscillates around a steady state, which is the diseases free equilibrium of the corresponding deterministic model,and if R0> 1,it fluctuates around the endemic equilibrium of the deterministic model.
文摘In a polluted environment, considering the biological population infected with a kind of disease and hunted by human beings, we formulate a nonautonomous SIR population-epidemic model with time-varying impulsive release and general nonlinear incidence rate and investigate dynamical behaviors of the model. Under the reasonable assumptions, the sufficient conditions which guarantee the globally attractive of the disease-free periodic solution and the permanence of the infected fish are established, that is, the infected fish dies out if , whereas the disease persists if . To substantiate our theoretical results, extensive numerical simulations are performed for a hypothetical set of parameter values.
文摘In this paper, we investigate the dynamic properties of an SIR epidemic model with saturated growth rate. Under the conditions of an arbitrary initial value, we prove that the system exists unique positive solution, and give the sufficient conditions caused by random environmental factors leading to the extinction of infectious diseases. Moreover, we verify the conditions for the persistence of infectious diseases in the mean sense. Finally, we provide the biology interpretation and some strategies to control the infectious diseases.
文摘Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.
基金National Natural Science Foundation of China(No.61273070)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘This paper is concerned with a delayed SIRS epidemic model with a nonlinear incidence rate. The main results are given in terms of local stability and Hopf bifurcation. Sufficient conditions for the local stability of the positive equilibrium and existence of Hopf bifurcation are obtained by regarding the time delay as the bifurcation parameter. Further,the properties of Hopf bifurcation such as the direction and stability are investigated by using the normal form theory and center manifold argument. Finally,some numerical simulations are presented to verify the theoretical analysis.
基金Foundation of Shanghai for Outstanding Young Teachers in University,China(No.B-5300-08-007)the 085 Knowledge Innovation Project of Shanghai Municipal Education Commission,China(No.Z08509008-01)Humanities and SocialScience Fund General Project of Ministry of Education,China(No.08JA630051)
文摘A detailed analysis was carried out on global asymptotic behavior of a kind of stochastic SIRS(susceptible-infective-removed-susceptible)model.This model has been obtained by introducing stochasticity into the original deterministic SIRS model via the technique of parameter perturbation which is standard in stochastic population modeling.By making corresponding Lyapunov function and using It formula,the condition for the solution of the model tending to the disease free equilibrium asymptotically was obtained.Under this condition,the epidemics will die out as time goes by.Based on this,almost surely exponential stability was analyzed.
文摘In this study, the mathematical SIR model (Susceptible-Infected-Recovered (cured and deceased)) was applied to the case of Senegal during the first two waves of the COVID-19 pandemic. During this period, from March 1, 2020, to March 30, 2021, the transmission and recovery rates as well as the number of reproduction were calculated and analyzed for the impact of the decisions taken by the Senegalese government. In both waves, the variation of the basic reproduction number as a function of time, with values below one towards the end of each study period, confirms the success of the Senegalese government in controlling the epidemic. The results show that the solution of mandatory mask-wearing is the best decision to counter the spread of the disease. Indeed, the mean number of reproduction is 2.11 in the first wave, and the second wave has a lower mean value of 1.23, while the decisions are less restrictive during this latter wave. Also, a short-term prediction model (about 4 months) was validated on the second wave. The validation criteria of this model reveal a good match between the results of the simulated model and the COVID-19 data reported via the Ministry of Health, Solidarity, and Social Action of Senegal.
基金Natural Science Foundation of Hunan University of Technology,China(No.2012HZX08)the Special Foundation of National Independent Innovation Demonstration Area Construction of Zhuzhou(Applied Basic Research),China
文摘A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a unique global positive solution;(2) the results reveal that the solution of this epidemic model will be stochastically ultimately bounded,and the non-linear SDE admits a unique stationary distribution under certain parametric conditions;(3) the coefficients play an important role in the extinction of the diseases.
文摘In this paper we provide different types of approach in mathematical biology about infection disease and understanding the dynamic of epidemic mathematical models specially in COVID-19 disease which first outbroke in China and fast spread around the world. We work in the connection between the mathematical models and the solution analytically and numerically. At first, we emphasize the Susceptible-Infectious-Recovered (SIR) models’ extension for policy significance. Then, we found the improved SIER model done by research. In third section, we examine the improved model when an appropriate vaccine has been found, we introduce the model of SIR with vaccine term which ends up with discussion and conclusion about the effect of vaccinate. The comprehension of COVID-19 transmission methods, structures, and characteristics is greatly aided by these mathematical models analytically and numerically.
文摘In the context of the COVID-19 sweeping the world,countries around the globe have adopted different approaches to control the spread of disease,and in order to find better control methods,this paper explores the influence of people’s awareness on SIR model.On the basis of the SIR model,this paper studies the SEIR model with the exposure period parameter,calculates the feasible region R-naught disease-free point,and analyzes the method of controlling the spread of the disease according to R-naught,which shows that lockdown has a significant effect on the control of COVID-19.In addition,this paper also established a model affected by disease awareness,adding a factor of news media and religious awareness.The feasible region is calculated,and the reality situation based on India is analyzed.The conclusion proved that people’s awareness has a greater influence on the spread of diseases.
文摘The SIR(D) epidemiological model is defined through a system of transcendental equations, not solvable by elementary functions. In the present paper those equations are successfully replaced by approximate ones, whose solutions are given explicitly in terms of elementary functions, originating, piece-wisely, from generalized logistic functions: they ensure <em>exact</em> (in the numerical sense) asymptotic values, besides to be quite practical to use, for example with fit to data algorithms;moreover they unveil a useful feature, that in fact, at least with very strict approximation, is also owned by the (numerical) solutions of the <em>exact</em> equations. The novelties in the work are: the way the approximate equations are obtained, using simple, analytic geometry considerations;the easy and practical formulation of the final approximate solutions;the mentioned useful feature, never disclosed before. The work’s method and result prove to be robust over a range of values of the well known non-dimensional parameter called <em>basic reproduction ratio</em>, that covers at least all the known epidemic cases, from influenza to measles: this is a point which doesn’t appear much discussed in analogous works.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China Grant 61273126, and the Natural Science Foundation of Guangdong Province Under Grants 10251064101000008 and S201210009675, the Fundamental Research Funds for the Central Universities 2012ZM0059, and Research Fund for the Doctoral Program of Higher Education of China under grant 20130172110027.
文摘We establish a stochastic differential equation epidemic model of multi-group SIR type based on the deterministic multi-group SIR mode. Then, we define the basic reproduction number R0^S and show that it is a sharp threshold for the dynamic of the stochastic multi-group SIR model. More specially, if R0^S 〈 1, then the disease-free equilibrium will be asymptotically stable which means the disease will die out, if R0^S 〉 1, the disease-free equilibrium will unstable, and our model will positively recurrence to a positive domain which implies the persistence of our model. Numerical simulation examples are carried out to substantiate the analytical results.
文摘Based on the mechanism of prevention and control of infectious disease, we propose, in this paper, an SIRS epidemic model with varying total population size and state-dependent control, where the fraction of susceptible individuals in population is as the detection threshold value. By the Poincaré map, theory of differential inequalities and differential equation geometry, the existence and orbital stability of the disease-free periodic solution are discussed. Theoretical results show that by state-dependent pulse vaccination we can make the proportion of infected individuals tend to zero, and control the transmission of disease in population.