In this paper,a Slotted Stepped-Impedance Resonator (SSIR) is proposed.Due to the slots in the low-impedance section of the conventional SIR,the new resonator has a lower fundamental resonance f0 and can provide a pot...In this paper,a Slotted Stepped-Impedance Resonator (SSIR) is proposed.Due to the slots in the low-impedance section of the conventional SIR,the new resonator has a lower fundamental resonance f0 and can provide a potential finite transmission zero fz close to f0.Based on the proposed SSIR,a fourth-order Chebychev BandPass Filter (BPF) is designed at f0=1 GHz.The measured results show that a better than-65 dB rejection is achieved on both the lower and the upper stopband.Moreover,the new filter has a wide-30 dB rejection upper stopband from 1.13f0 to 6.52f0.The fabricated filter exhibits a size of The new filter has a planar topology and is easily integrated with modern portable communication systems.展开更多
A microstrip interlocked-coupled bandpass filter is proposed with a markedly compact structure. The low-impedance open-end line of the quarter-wavelength Stepped-Impedance Resonator (SIR) is replaced by two open-end h...A microstrip interlocked-coupled bandpass filter is proposed with a markedly compact structure. The low-impedance open-end line of the quarter-wavelength Stepped-Impedance Resonator (SIR) is replaced by two open-end high-impedance lines, which not only facilitate the coupling mechanism but also provide the strong electric coupling between resonators. With the proper utilization of folded SIRs, the occupied area of coupled-resonator pair can be reduced. By applying the proposed coupled-resonator pair, the passband filter with the compact size can be realized. Good agreement between measured and simulated results is observed. The proposed filter is desirable for compact and high-performance microwave circuit applications.展开更多
Compact dual-band bandpass filter(BPF)for the 5 th generation mobile communication technology(5 G)radio frequency(RF)front-end applications was presented based on multilayer stepped impedance resonators(SIRs).The mult...Compact dual-band bandpass filter(BPF)for the 5 th generation mobile communication technology(5 G)radio frequency(RF)front-end applications was presented based on multilayer stepped impedance resonators(SIRs).The multilayer dual-band SIR BPF can achieve high selectivity and four transmission zeros(TZs)near the passband edges by the quarter-wavelength tri-section SIRs.The multilayer dual-band SIR BPF is fabricated on a 3-layer FR-4 substrate with a compact dimension of 5.5 mm×5.0 mm×1.2 mm.The measured two passbands of the multilayer dual-band SIR BPF are 3.3 GHz-3.5 GHz and 4.8 GHz-5.0 GHz with insertion loss(IL)less than 2 dB respectively.Both measured and simulated results suggest that it is a possible candidate for the application of 5 G RF front-end at sub-6 GHz frequency band.展开更多
A tunable stepped-impedance resonator using liquid crystal is demonstrated.Two resonant frequencies at 3.367 and 7.198 GHz are realized and can be continuously tuned by external applied voltages.Continuous tunable ran...A tunable stepped-impedance resonator using liquid crystal is demonstrated.Two resonant frequencies at 3.367 and 7.198 GHz are realized and can be continuously tuned by external applied voltages.Continuous tunable ranges of 52 and 210 MHz have been achieved at a particularly low driving voltage of 14 V,which shows good agreement with the simulation results.The voltage-induced hysteresis phenomenon is also investigated.This device also has a low insertion loss of-2.9 and-4 dB for the two resonant frequencies and the return losses are less than-21.5 dB.This work provides a new protocol to realize a tunable frequency for communication systems.展开更多
文摘In this paper,a Slotted Stepped-Impedance Resonator (SSIR) is proposed.Due to the slots in the low-impedance section of the conventional SIR,the new resonator has a lower fundamental resonance f0 and can provide a potential finite transmission zero fz close to f0.Based on the proposed SSIR,a fourth-order Chebychev BandPass Filter (BPF) is designed at f0=1 GHz.The measured results show that a better than-65 dB rejection is achieved on both the lower and the upper stopband.Moreover,the new filter has a wide-30 dB rejection upper stopband from 1.13f0 to 6.52f0.The fabricated filter exhibits a size of The new filter has a planar topology and is easily integrated with modern portable communication systems.
文摘A microstrip interlocked-coupled bandpass filter is proposed with a markedly compact structure. The low-impedance open-end line of the quarter-wavelength Stepped-Impedance Resonator (SIR) is replaced by two open-end high-impedance lines, which not only facilitate the coupling mechanism but also provide the strong electric coupling between resonators. With the proper utilization of folded SIRs, the occupied area of coupled-resonator pair can be reduced. By applying the proposed coupled-resonator pair, the passband filter with the compact size can be realized. Good agreement between measured and simulated results is observed. The proposed filter is desirable for compact and high-performance microwave circuit applications.
基金supported by the Beijing Natural Science Foundation(8202036)。
文摘Compact dual-band bandpass filter(BPF)for the 5 th generation mobile communication technology(5 G)radio frequency(RF)front-end applications was presented based on multilayer stepped impedance resonators(SIRs).The multilayer dual-band SIR BPF can achieve high selectivity and four transmission zeros(TZs)near the passband edges by the quarter-wavelength tri-section SIRs.The multilayer dual-band SIR BPF is fabricated on a 3-layer FR-4 substrate with a compact dimension of 5.5 mm×5.0 mm×1.2 mm.The measured two passbands of the multilayer dual-band SIR BPF are 3.3 GHz-3.5 GHz and 4.8 GHz-5.0 GHz with insertion loss(IL)less than 2 dB respectively.Both measured and simulated results suggest that it is a possible candidate for the application of 5 G RF front-end at sub-6 GHz frequency band.
基金the National Natural Science Foundation of China(Nos.61704090 and 11904177)the Natural Science Foundation of Jiangsu Province,China(Nos.BK20170908 and BK20170903)+2 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(No.17KJA470005)the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology(No.KFJJ20180201)NUPTSF(Nos.NY217123 and NY217124)。
文摘A tunable stepped-impedance resonator using liquid crystal is demonstrated.Two resonant frequencies at 3.367 and 7.198 GHz are realized and can be continuously tuned by external applied voltages.Continuous tunable ranges of 52 and 210 MHz have been achieved at a particularly low driving voltage of 14 V,which shows good agreement with the simulation results.The voltage-induced hysteresis phenomenon is also investigated.This device also has a low insertion loss of-2.9 and-4 dB for the two resonant frequencies and the return losses are less than-21.5 dB.This work provides a new protocol to realize a tunable frequency for communication systems.