BACKGROUND Diabetic nephropathy(DN)is the most frequent chronic microvascular consequence of diabetes,and podocyte injury and malfunction are closely related to the development of DN.Studies have shown that corilagin(...BACKGROUND Diabetic nephropathy(DN)is the most frequent chronic microvascular consequence of diabetes,and podocyte injury and malfunction are closely related to the development of DN.Studies have shown that corilagin(Cor)has hepatoprotective,anti-inflammatory,antibacterial,antioxidant,anti-hypertensive,antidiabetic,and anti-tumor activities.AIM To explore the protective effect of Cor against podocyte injury in DN mice and the underlying mechanisms.METHODS Streptozotocin and a high-fat diet were combined to generate DN mice models,which were then divided into either a Cor group or a DN group(n=8 in each group).Mice in the Cor group were intraperitoneally injected with Cor(30 mg/kg/d)for 12 wk,and mice in the DN group were treated with saline.Biochemical analysis was used to measure the blood lipid profiles.Hematoxylin and eosin staining was used to detect pathological changes in kidney tissue.Immunohistochemistry and Western blotting were used to assess the protein expression of nephrin and podocin.Mouse podocyte cells(MPC5)were cultured and treated with glucose(5 mmol/L),Cor(50μM),high glucose(HG)(30 mmol/L),and HG(30 mmol/L)plus Cor(50μM).Real-time quantitative PCR and Western blotting RESULTS Compared with the control group,the DN mice models had increased fasting blood glucose,glycosylated hemoglobin,triglycerides,and total cholesterol,decreased nephrin and podocin expression,increased apoptosis rate,elevated inflammatory cytokines,and enhanced oxidative stress.All of the conditions mentioned above were alleviated after intervention with Cor.In addition,Cor therapy improved SIRT1 and AMPK expression(P<0.001),inhibited reactive oxygen species and oxidative stress,and elevated autophagy in HG-induced podocytes(P<0.01).CONCLUSION Cor alleviates podocyte injury by regulating autophagy via the SIRT1-AMPK pathway,thereby exerting its protective impact on renal function in DN mice.展开更多
BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a clinicopathological entity characterized by intrahepatic ectopic steatosis.As a consequence of increased consumption of high-calorie diet and adoption of a sedent...BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a clinicopathological entity characterized by intrahepatic ectopic steatosis.As a consequence of increased consumption of high-calorie diet and adoption of a sedentary lifestyle,the incidence of NAFLD has surpassed that of viral hepatitis,making it the most common cause of chronic liver disease globally.Huangqin decoction(HQD),a Chinese medicinal formulation that has been used clinically for thousands of years,has beneficial outcomes in patients with liver diseases,including NAFLD.However,the role and mechanism of action of HQD in lipid metabolism disorders and insulin resistance in NAFLD remain poorly understood.AIM To evaluate the ameliorative effects of HQD in NAFLD,with a focus on lipid metabolism and insulin resistance,and to elucidate the underlying mechanism of action.METHODS High-fat diet-induced NAFLD rats and palmitic acid(PA)-stimulated HepG2 cells were used to investigate the effects of HQD and identify its potential mechanism of action.Phytochemicals in HQD were analyzed by highperformance liquid chromatography(HPLC)to identify the key components.RESULTS Ten primary chemical components of HQD were identified by HPLC analysis.In vivo,HQD effectively prevented rats from gaining body and liver weight,improved the liver index,ameliorated hepatic histological aberrations,decreased transaminase and lipid profile disorders,and reduced the levels of pro-inflammatory factors and insulin resistance.In vitro studies revealed that HQD effectively alleviated PA-induced lipid accumulation,inflammation,and insulin resistance in HepG2 cells.In-depth investigation revealed that HQD triggers Sirt1/NF-κB pathwaymodulated lipogenesis and inflammation,contributing to its beneficial actions,which was further corroborated by the addition of the Sirt1 antagonist EX-527 that compromised the favorable effects of HQD.CONCLUSION In summary,our study confirmed that HQD mitigates lipid metabolism disorders and insulin resistance in NAFLD by triggering the Sirt1/NF-κB pathway.展开更多
[Objectives]Non-alcoholic fatty liver disease(NAFLD)rat model was established by feeding high-fat and high-sugar fodder to rats,and the protective effect of Dicliptera chinensis polysaccharide(DCP)on NAFLD rats was st...[Objectives]Non-alcoholic fatty liver disease(NAFLD)rat model was established by feeding high-fat and high-sugar fodder to rats,and the protective effect of Dicliptera chinensis polysaccharide(DCP)on NAFLD rats was studied to explore its potential mechanism.[Methods]45 SD rats were randomly divided into 4 groups:normal control group,model control group and DCP treatment groups(100 and 300 mg/kg).The rats in the normal control group were fed with ordinary fodder,and the rats in other groups were fed with high-fat and high-sugar diet for 14 weeks to establish NAFLD model.From the 9^(th)week,the rats in the DCP treatment groups were given different doses of DCP by intragastric administration(5 mL/kg)for 6 weeks.After the last intragastric administration,the rats fasted for 16 h,and the serum and liver of rats were collected for detection.Hematoxylin-eosin(HE)staining was conducted to observe the histopathological changes of rat liver,and alanine aminotransferase(ALT),aspartate aminotransferase(AST),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),malondialdehyde(MDA),triglyceride(TG),total cholesterol(TC),low density lipoprotein cholesterol(LDL-C),and high density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Interleukin-6(IL-6),interleukin-1β(IL-1β),tumor necrosis factor(TNF-α)and micrornA-141(micro RNA-141)were detected by reverse transcription-polymerase chain reaction(RT-PCR).The expression of SIRT1 and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)in rat liver was detected by western blot.[Results]Compared with the model control group,the inflammatory damage and steatodegeneration of rats in the DCP groups were relieved to varying degrees,and the number of lipid vacuoles significantly reduced.The ALT,AST,TC,TG and LDL-C content in the serum and MDA content in the liver tissue decreased to varying degrees,while the HDL-C,SOD and GSH-Px content increased.The expression of SIRT1 and AMPK increased,while the expression of miR-141,TNF-α,IL-6 and IL-1βdeclined,and the DCP 300 mg/kg treatment group had better improvement effect.[Conclusions]DCP had a certain protective effect on NAFLD rats,which may be related to the regulation of miR-141/AMPK/SIRT1 signaling pathway.展开更多
BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchym...BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchymal stem cells(NPMSCs)and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs(IVDs).Quercetin(Que)has been demonstrated to reduce oxidative stress in diverse degenerative diseases.AIM To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.METHODS In vitro,NPMSCs were isolated from rat tails.Senescence-associatedβ-galactosidase(SA-β-Gal)staining,cell cycle,reactive oxygen species(ROS),realtime quantitative polymerase chain reaction(RT-qPCR),immunofluorescence,and western blot analyses were used to evaluated the protective effects of Que.Meanwhile the relationship between miR-34a-5p and Sirtuins 1(SIRT1)was evaluated by dual-luciferase reporter assay.To explore whether Que modulates tert-butyl hydroperoxide(TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway,we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression.In vivo,a puncture-induced rat IDD model was constructed,and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.RESULTS We found that TBHP can cause NPMSCs senescence changes,such as reduced cell proliferation ability,increased SA-β-Gal activity,cell cycle arrest,the accumulation of ROS,and increased expression of senescence-related proteins.While abovementioned senescence indicators were significantly alleviated by Que treatment.Que decreased the expression levels of senescence-related proteins(p16,p21,and p53)and senescence-associated secreted phenotype(SASP),including IL-1β,IL-6,and MMP-13,and it increased the expression of SIRT1.In addition,the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown.In vivo,X-ray,and histological analyses indicated that Que alleviated IDD in a punctureinduced rat model.CONCLUSION In summary,the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway,suggesting that Que may be a potential agent for the treatment of IDD.展开更多
Post-resuscitation myocardial dysfunction(PRMD)is the most severe myocardial ischemia-reperfusion injury(MIRI)and is characterized by difficult treatment and poor prognosis.Research has shown the protective effects of...Post-resuscitation myocardial dysfunction(PRMD)is the most severe myocardial ischemia-reperfusion injury(MIRI)and is characterized by difficult treatment and poor prognosis.Research has shown the protective effects of the rational use of ivabradine(IVA)against PRMD,however,the molecular mechanisms of IVA remain unknown.In this study,an ischemia-reperfusion injury(IRI)model was established using hypoxic chambers.The results demonstrated that pretreatment with IVA reduced IRI-induced cytotoxicity and apoptosis.IVA attenuated mitochondrial damage,eliminated excess reactive oxygen species(ROS),suppressed IRI-induced ATP and NAD+,and increased the AMP/ATP ratio.We further found that IVA increased the mRNA levels of sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α)and upregulated the expression levels of phosphorylated AMP-activated protein kinase(p-AMPK)/AMPK,SIRT1,and PGC-1αproteins.Interestingly,no change in AMPK mRNA levels was observed.Cardiomyocyte energy metabolism significantly changed after IRI.The aim of this study was to demonstrate the cardioprotective effect of Ivabradine via the AMPK/SIRT1/PGC-1αsignaling pathway in myocardial ischemia/reperfusion injury-induced in H9c2 cell.展开更多
Objective:To observe the effects of resveratrol on myocardial cell injury and Mst1/Sirt3 signaling pathway mediated autophagy in type 2 diabetic mice. Methods:C57 BL/KSJ db/db mice were allocated to the normal control...Objective:To observe the effects of resveratrol on myocardial cell injury and Mst1/Sirt3 signaling pathway mediated autophagy in type 2 diabetic mice. Methods:C57 BL/KSJ db/db mice were allocated to the normal control group,the model group,and the resveratrol group;C57 BL/KSJ db/m mice served as the melbine group,with 10 mice each. The resveratrol group and the melbine group were treated with resveratrol and metformin by gavage,respectively. The normal control group and the model group were treated with equal volume of normal saline by gavage,for 8 consecutive weeks. H & E staining,transmission electron microscopy and immunofluorescence were used to observe the pathological morphology,ultrastructure and apoptosis levels of myocardial tissues,respectively. RT-qPCR method was used to detect the expression levels of apoptosis genes Bax and Bcl-2 in myocardial tissues,and Western-blot method was used to detect the expression levels of autophagy proteins(LC3 and p62),Mst1 and Sirt3 proteins in myocardial tissue. Results:Compared with the model group,resveratrol can significantly reduce the body weight,blood glucose level and serum CK and LDH levels of db/db mice,and the differences were statistically significant(P<0.05;P<0.01). Meanwhile,after resveratrol treatment,myocardial inflammation score,apoptosis rate,Bax mRNA expression level and Bax/Bcl-2 ratio in myocardial tissue were significantly reduced,and Bcl-2 mRNA expression level was significantly increased,and the differences were statistically significant(P<0.01). In addition,compared with the model group,the expression level of p62 and p-Mst1 protein in the myocardial tissue of the resveratrol group was significantly reduced,and the expression level of Sirt3 protein and the ratio of LC3Ⅱ/LC3Ⅰ were significantly increased,and the differences were statistically significant(P<0.01). Conclusion:Resveratrol promotes the autophagy level of cardiomyocytes by activating the Mst1/Sirt3 signaling pathway and inhibits cardiomyocyte apoptosis to play a protective role in diabetic cardiomyopathy.展开更多
Objective:To observe the protective effect of hesperidin on myocardial ischemia/reperfusion injury in type 2 diabetes mellitus and its effect on SIRT1/Nrf2/HO-1 signaling pathway.Methods:50 Sprague-Dawley(SD)rats were...Objective:To observe the protective effect of hesperidin on myocardial ischemia/reperfusion injury in type 2 diabetes mellitus and its effect on SIRT1/Nrf2/HO-1 signaling pathway.Methods:50 Sprague-Dawley(SD)rats were randomly assigned to the normal control group(NC),model group,ischemia-reperfusion group(IR),hesperidin group,SIRT1 inhibitor group and hesperidin plus SIRT1 inhibitor group.In addition to NC,the rats in the remaining groups were replicated by intraperitoneal of high-fat diet combined with injection of streptozotocin for type 2 diabetic rats.After then,the myocardial ischemia/reperfusion injury(MIRI)rat model was established by LAd for 30 minutes with 2 hours reperfusion.He staining was used to observe the pathological changes of myocardial tissue,and the levels of serum LDH,CK-MB and SOD,GSH and MDA in myocardial tissue were detected by kit methods,and the expression abundance of related proteins in 4-HNE and SIRT1/Nrf2/HO-1 signal pathway were detected by immunohistochemistry and Western blot;Results:Hesperidin could significantly inhibit cardiomyocyte necrosis and inflammatory cell infiltration,reduce LDH activity,CK-MB and MDA level,and increase SOD activity,GSH and 4-HNE level,the differences were statistically significant when compared with IR group(P<0.01).In addition,compared with the ischemia-reperfusion group,the expressions of SIRT1,Nrf2 and HO-1 proteins in hesperidin group were significantly up-regulated,the differences were statistically significant(P<0.01);Conclusion:Hesperidin inhibits oxidative stress by activating SIRT1/Nrf2/HO-1 signaling pathway,and play a protective effect of myocardial ischemia reperfusion injury in diabetic rats.展开更多
Objective:To investigate how Yiqi Yangyin and Huatan Quyu granule (YYHO) improves skeletal muscle insulin resistance in a type 2 diabetic rat model and to discover whether the molecular mechanism is related to the pro...Objective:To investigate how Yiqi Yangyin and Huatan Quyu granule (YYHO) improves skeletal muscle insulin resistance in a type 2 diabetic rat model and to discover whether the molecular mechanism is related to the promotion of the AMPK/SIRT/PGC-1α signalling pathway.Methods:Rats were randomly divided into 4 groups:the normal group,the model group,the YYHQ granule group,and the pioglitazone group.The type 2 diabetic rat model was established by feeding a high-fat diet for 5 weeks along with a single intraperitoneal injection of 30 mg/kg streptozotocin (STZ).After modelling successfully,the appropriate drug was intragastrically administered to diabetic rats for 2 weeks,once per day.The YYHQ granule group was given a dose of 4.8 g/kg body weight per day,the pioglitazone group was given a dose of 1.35 mg/kg body weight per day.The doses for both groups were equivalent to the clinical equivalent dose based on a previous study.Other groups were gavaged with the same amount of saline water.Body weight,food intake,water intake,urine volume and grip strength were recorded weekly.The fasting blood glucose(FBG) was determined weekly using blood glucose test strips.The related glucose and lipid metabolism indexes,e.g.,fasting insulin (Fins),glycated haemoglobin (GHb),HOMA-IR,ISI,triglycerides (TG),total cholesterol (TC),high-density lipoprotein cholesterol (HDL-C),low-density lipoprotein cholesterol (LDL-C) and free fatty acid (FFA),were determined using biochemical method.The mRNA expression levels of adenosine monophosphate-activated protein kinase (AMPK),peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α),carnitine palmitoyl transterase-1 (CPT-1),Sirtuin 1 (SIRT1),and Sirtuin 3 (SIRT3) were assessed using quantitative real-time PCR (qRT-PCR).The protein expression levels of creatine kinase (CK),Ca2+ ATPase,α-Actin,AMPK,PGC-1α and CPT-1 were determined using enzyme-linked immunosorbent assay method (ELISA).Results:Body weight decreased significantly (P <.01),food intake,water intake and urine volume increased significantly (P <.01),and grip strength decreased significantly (P <.01) in the model group compared with the normal group.The levels of FBG,Fins,GHb and HOMA-IR increased significantly (P <.01),and the ISI decreased significantly (P <.01) in the model group.The levels of TG,TC,LDL-C and FFA increased significantly (P <.05 or P <.01),and the level of HDL-C decreased significantly (P <.05) in the model group.These changes were reversed after treatment with YYHQ granule or pioglitazone.Compared with the model group,the YYHQ granule and pioglitazone groups significantly improve body weight,water intake and urine volume (P <.05 or P <.01),however,both treatments had no significant effect on food intake (P >.05).The levels of FBG,Fins,GHb,HOMA-IR and ISI were improved significantly (P <.01) and the levels of TG,TC and LDL-C were improved significantly (P <.05 or P <.01),however,both treatments had no significant effect on the levels of HDL-C and FFA (P >.05).Further results indicated that YYHQ granule significantly decreased the mRNA expression of AMPK,PGC-1α,CPT-1,SIRT1 and SIRT3 in skeletal muscle (P <.01) and the pioglitazone group showed similar effects;moreover,the protein expression levels of CK,Ca2+ATPase,α-Actin,AMPK,PGC-1α and CPT-1 in skeletal muscle significantly decreased (P <.01),however,pioglitazone had no significant effect on CK and α-Actin (P >.05).Conclusion:The possible molecular mechanism of YYHQ granule improving skeletal muscle insulin resistance in a type 2 diabetic rat model may be related to the stimulation of energy metabolism in skeletal muscle via the AMPK/SIRT/PGC-1α signalling pathway.展开更多
基金Supported by Shanghai Pudong New Area Leading Talents Training Program Project,No.PWR12020-02Shanghai Pudong New Area Excellent Young Medical Talents Training Program Project,No.PWRq2023-40Shanghai Pudong New Area Health and Family Planning Scientific Research Project,No.PW2022A-91.
文摘BACKGROUND Diabetic nephropathy(DN)is the most frequent chronic microvascular consequence of diabetes,and podocyte injury and malfunction are closely related to the development of DN.Studies have shown that corilagin(Cor)has hepatoprotective,anti-inflammatory,antibacterial,antioxidant,anti-hypertensive,antidiabetic,and anti-tumor activities.AIM To explore the protective effect of Cor against podocyte injury in DN mice and the underlying mechanisms.METHODS Streptozotocin and a high-fat diet were combined to generate DN mice models,which were then divided into either a Cor group or a DN group(n=8 in each group).Mice in the Cor group were intraperitoneally injected with Cor(30 mg/kg/d)for 12 wk,and mice in the DN group were treated with saline.Biochemical analysis was used to measure the blood lipid profiles.Hematoxylin and eosin staining was used to detect pathological changes in kidney tissue.Immunohistochemistry and Western blotting were used to assess the protein expression of nephrin and podocin.Mouse podocyte cells(MPC5)were cultured and treated with glucose(5 mmol/L),Cor(50μM),high glucose(HG)(30 mmol/L),and HG(30 mmol/L)plus Cor(50μM).Real-time quantitative PCR and Western blotting RESULTS Compared with the control group,the DN mice models had increased fasting blood glucose,glycosylated hemoglobin,triglycerides,and total cholesterol,decreased nephrin and podocin expression,increased apoptosis rate,elevated inflammatory cytokines,and enhanced oxidative stress.All of the conditions mentioned above were alleviated after intervention with Cor.In addition,Cor therapy improved SIRT1 and AMPK expression(P<0.001),inhibited reactive oxygen species and oxidative stress,and elevated autophagy in HG-induced podocytes(P<0.01).CONCLUSION Cor alleviates podocyte injury by regulating autophagy via the SIRT1-AMPK pathway,thereby exerting its protective impact on renal function in DN mice.
基金the Scientific Research Project of Jiangsu Health Commission,No.Z2022078the Natural Science Foundation of Jiangsu Province,No.BK20220299.
文摘BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a clinicopathological entity characterized by intrahepatic ectopic steatosis.As a consequence of increased consumption of high-calorie diet and adoption of a sedentary lifestyle,the incidence of NAFLD has surpassed that of viral hepatitis,making it the most common cause of chronic liver disease globally.Huangqin decoction(HQD),a Chinese medicinal formulation that has been used clinically for thousands of years,has beneficial outcomes in patients with liver diseases,including NAFLD.However,the role and mechanism of action of HQD in lipid metabolism disorders and insulin resistance in NAFLD remain poorly understood.AIM To evaluate the ameliorative effects of HQD in NAFLD,with a focus on lipid metabolism and insulin resistance,and to elucidate the underlying mechanism of action.METHODS High-fat diet-induced NAFLD rats and palmitic acid(PA)-stimulated HepG2 cells were used to investigate the effects of HQD and identify its potential mechanism of action.Phytochemicals in HQD were analyzed by highperformance liquid chromatography(HPLC)to identify the key components.RESULTS Ten primary chemical components of HQD were identified by HPLC analysis.In vivo,HQD effectively prevented rats from gaining body and liver weight,improved the liver index,ameliorated hepatic histological aberrations,decreased transaminase and lipid profile disorders,and reduced the levels of pro-inflammatory factors and insulin resistance.In vitro studies revealed that HQD effectively alleviated PA-induced lipid accumulation,inflammation,and insulin resistance in HepG2 cells.In-depth investigation revealed that HQD triggers Sirt1/NF-κB pathwaymodulated lipogenesis and inflammation,contributing to its beneficial actions,which was further corroborated by the addition of the Sirt1 antagonist EX-527 that compromised the favorable effects of HQD.CONCLUSION In summary,our study confirmed that HQD mitigates lipid metabolism disorders and insulin resistance in NAFLD by triggering the Sirt1/NF-κB pathway.
基金Supported by National Natural Science Foundation of China(81960779,82160811)Project for Degree and Graduate Education Reform in Guangxi(JGY2022215)。
文摘[Objectives]Non-alcoholic fatty liver disease(NAFLD)rat model was established by feeding high-fat and high-sugar fodder to rats,and the protective effect of Dicliptera chinensis polysaccharide(DCP)on NAFLD rats was studied to explore its potential mechanism.[Methods]45 SD rats were randomly divided into 4 groups:normal control group,model control group and DCP treatment groups(100 and 300 mg/kg).The rats in the normal control group were fed with ordinary fodder,and the rats in other groups were fed with high-fat and high-sugar diet for 14 weeks to establish NAFLD model.From the 9^(th)week,the rats in the DCP treatment groups were given different doses of DCP by intragastric administration(5 mL/kg)for 6 weeks.After the last intragastric administration,the rats fasted for 16 h,and the serum and liver of rats were collected for detection.Hematoxylin-eosin(HE)staining was conducted to observe the histopathological changes of rat liver,and alanine aminotransferase(ALT),aspartate aminotransferase(AST),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),malondialdehyde(MDA),triglyceride(TG),total cholesterol(TC),low density lipoprotein cholesterol(LDL-C),and high density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Interleukin-6(IL-6),interleukin-1β(IL-1β),tumor necrosis factor(TNF-α)and micrornA-141(micro RNA-141)were detected by reverse transcription-polymerase chain reaction(RT-PCR).The expression of SIRT1 and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)in rat liver was detected by western blot.[Results]Compared with the model control group,the inflammatory damage and steatodegeneration of rats in the DCP groups were relieved to varying degrees,and the number of lipid vacuoles significantly reduced.The ALT,AST,TC,TG and LDL-C content in the serum and MDA content in the liver tissue decreased to varying degrees,while the HDL-C,SOD and GSH-Px content increased.The expression of SIRT1 and AMPK increased,while the expression of miR-141,TNF-α,IL-6 and IL-1βdeclined,and the DCP 300 mg/kg treatment group had better improvement effect.[Conclusions]DCP had a certain protective effect on NAFLD rats,which may be related to the regulation of miR-141/AMPK/SIRT1 signaling pathway.
基金Supported by the National Natural Science Foundation of China,No.82172462,No.81972136the Traditional Chinese Medicine Science and Technology Development Plan Project of Jiangsu Province,No.YB2020085Cross Cooperation Project of Northern Jiangsu People’s Hospital,No.SBJC21014.
文摘BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchymal stem cells(NPMSCs)and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs(IVDs).Quercetin(Que)has been demonstrated to reduce oxidative stress in diverse degenerative diseases.AIM To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.METHODS In vitro,NPMSCs were isolated from rat tails.Senescence-associatedβ-galactosidase(SA-β-Gal)staining,cell cycle,reactive oxygen species(ROS),realtime quantitative polymerase chain reaction(RT-qPCR),immunofluorescence,and western blot analyses were used to evaluated the protective effects of Que.Meanwhile the relationship between miR-34a-5p and Sirtuins 1(SIRT1)was evaluated by dual-luciferase reporter assay.To explore whether Que modulates tert-butyl hydroperoxide(TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway,we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression.In vivo,a puncture-induced rat IDD model was constructed,and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.RESULTS We found that TBHP can cause NPMSCs senescence changes,such as reduced cell proliferation ability,increased SA-β-Gal activity,cell cycle arrest,the accumulation of ROS,and increased expression of senescence-related proteins.While abovementioned senescence indicators were significantly alleviated by Que treatment.Que decreased the expression levels of senescence-related proteins(p16,p21,and p53)and senescence-associated secreted phenotype(SASP),including IL-1β,IL-6,and MMP-13,and it increased the expression of SIRT1.In addition,the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown.In vivo,X-ray,and histological analyses indicated that Que alleviated IDD in a punctureinduced rat model.CONCLUSION In summary,the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway,suggesting that Que may be a potential agent for the treatment of IDD.
基金the National Natural Science Foundation Youth Science Foundation(No.81601661)the Science Foundation for Post-doctoral researchers in Anhui Province of China(No.2016B140).
文摘Post-resuscitation myocardial dysfunction(PRMD)is the most severe myocardial ischemia-reperfusion injury(MIRI)and is characterized by difficult treatment and poor prognosis.Research has shown the protective effects of the rational use of ivabradine(IVA)against PRMD,however,the molecular mechanisms of IVA remain unknown.In this study,an ischemia-reperfusion injury(IRI)model was established using hypoxic chambers.The results demonstrated that pretreatment with IVA reduced IRI-induced cytotoxicity and apoptosis.IVA attenuated mitochondrial damage,eliminated excess reactive oxygen species(ROS),suppressed IRI-induced ATP and NAD+,and increased the AMP/ATP ratio.We further found that IVA increased the mRNA levels of sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α)and upregulated the expression levels of phosphorylated AMP-activated protein kinase(p-AMPK)/AMPK,SIRT1,and PGC-1αproteins.Interestingly,no change in AMPK mRNA levels was observed.Cardiomyocyte energy metabolism significantly changed after IRI.The aim of this study was to demonstrate the cardioprotective effect of Ivabradine via the AMPK/SIRT1/PGC-1αsignaling pathway in myocardial ischemia/reperfusion injury-induced in H9c2 cell.
基金Construction Project of TCM Academic Schools Inheritance Studio of State Administration of Traditional Chinese Medicine(No.LPGZS2012-14)Construction Project of National Famous Old TCM Experts Inheritance Studio of State Administration of Traditional Chinese Medicine.
文摘Objective:To observe the effects of resveratrol on myocardial cell injury and Mst1/Sirt3 signaling pathway mediated autophagy in type 2 diabetic mice. Methods:C57 BL/KSJ db/db mice were allocated to the normal control group,the model group,and the resveratrol group;C57 BL/KSJ db/m mice served as the melbine group,with 10 mice each. The resveratrol group and the melbine group were treated with resveratrol and metformin by gavage,respectively. The normal control group and the model group were treated with equal volume of normal saline by gavage,for 8 consecutive weeks. H & E staining,transmission electron microscopy and immunofluorescence were used to observe the pathological morphology,ultrastructure and apoptosis levels of myocardial tissues,respectively. RT-qPCR method was used to detect the expression levels of apoptosis genes Bax and Bcl-2 in myocardial tissues,and Western-blot method was used to detect the expression levels of autophagy proteins(LC3 and p62),Mst1 and Sirt3 proteins in myocardial tissue. Results:Compared with the model group,resveratrol can significantly reduce the body weight,blood glucose level and serum CK and LDH levels of db/db mice,and the differences were statistically significant(P<0.05;P<0.01). Meanwhile,after resveratrol treatment,myocardial inflammation score,apoptosis rate,Bax mRNA expression level and Bax/Bcl-2 ratio in myocardial tissue were significantly reduced,and Bcl-2 mRNA expression level was significantly increased,and the differences were statistically significant(P<0.01). In addition,compared with the model group,the expression level of p62 and p-Mst1 protein in the myocardial tissue of the resveratrol group was significantly reduced,and the expression level of Sirt3 protein and the ratio of LC3Ⅱ/LC3Ⅰ were significantly increased,and the differences were statistically significant(P<0.01). Conclusion:Resveratrol promotes the autophagy level of cardiomyocytes by activating the Mst1/Sirt3 signaling pathway and inhibits cardiomyocyte apoptosis to play a protective role in diabetic cardiomyopathy.
基金Construction Project of Traditional Chinese Medicine Academic Genre Inheritance Studio of the State Administration of Traditional Chinese Medicine(No.LPGZS2012-14)Construction Project of National Famous and old Traditional Chinese Medicine Expert Inheritance Studio of the State Administration of Traditional Chinese Medicine。
文摘Objective:To observe the protective effect of hesperidin on myocardial ischemia/reperfusion injury in type 2 diabetes mellitus and its effect on SIRT1/Nrf2/HO-1 signaling pathway.Methods:50 Sprague-Dawley(SD)rats were randomly assigned to the normal control group(NC),model group,ischemia-reperfusion group(IR),hesperidin group,SIRT1 inhibitor group and hesperidin plus SIRT1 inhibitor group.In addition to NC,the rats in the remaining groups were replicated by intraperitoneal of high-fat diet combined with injection of streptozotocin for type 2 diabetic rats.After then,the myocardial ischemia/reperfusion injury(MIRI)rat model was established by LAd for 30 minutes with 2 hours reperfusion.He staining was used to observe the pathological changes of myocardial tissue,and the levels of serum LDH,CK-MB and SOD,GSH and MDA in myocardial tissue were detected by kit methods,and the expression abundance of related proteins in 4-HNE and SIRT1/Nrf2/HO-1 signal pathway were detected by immunohistochemistry and Western blot;Results:Hesperidin could significantly inhibit cardiomyocyte necrosis and inflammatory cell infiltration,reduce LDH activity,CK-MB and MDA level,and increase SOD activity,GSH and 4-HNE level,the differences were statistically significant when compared with IR group(P<0.01).In addition,compared with the ischemia-reperfusion group,the expressions of SIRT1,Nrf2 and HO-1 proteins in hesperidin group were significantly up-regulated,the differences were statistically significant(P<0.01);Conclusion:Hesperidin inhibits oxidative stress by activating SIRT1/Nrf2/HO-1 signaling pathway,and play a protective effect of myocardial ischemia reperfusion injury in diabetic rats.
基金This research was supported and funded by the National Natural Science Foundation of China(No.81373541).
文摘Objective:To investigate how Yiqi Yangyin and Huatan Quyu granule (YYHO) improves skeletal muscle insulin resistance in a type 2 diabetic rat model and to discover whether the molecular mechanism is related to the promotion of the AMPK/SIRT/PGC-1α signalling pathway.Methods:Rats were randomly divided into 4 groups:the normal group,the model group,the YYHQ granule group,and the pioglitazone group.The type 2 diabetic rat model was established by feeding a high-fat diet for 5 weeks along with a single intraperitoneal injection of 30 mg/kg streptozotocin (STZ).After modelling successfully,the appropriate drug was intragastrically administered to diabetic rats for 2 weeks,once per day.The YYHQ granule group was given a dose of 4.8 g/kg body weight per day,the pioglitazone group was given a dose of 1.35 mg/kg body weight per day.The doses for both groups were equivalent to the clinical equivalent dose based on a previous study.Other groups were gavaged with the same amount of saline water.Body weight,food intake,water intake,urine volume and grip strength were recorded weekly.The fasting blood glucose(FBG) was determined weekly using blood glucose test strips.The related glucose and lipid metabolism indexes,e.g.,fasting insulin (Fins),glycated haemoglobin (GHb),HOMA-IR,ISI,triglycerides (TG),total cholesterol (TC),high-density lipoprotein cholesterol (HDL-C),low-density lipoprotein cholesterol (LDL-C) and free fatty acid (FFA),were determined using biochemical method.The mRNA expression levels of adenosine monophosphate-activated protein kinase (AMPK),peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α),carnitine palmitoyl transterase-1 (CPT-1),Sirtuin 1 (SIRT1),and Sirtuin 3 (SIRT3) were assessed using quantitative real-time PCR (qRT-PCR).The protein expression levels of creatine kinase (CK),Ca2+ ATPase,α-Actin,AMPK,PGC-1α and CPT-1 were determined using enzyme-linked immunosorbent assay method (ELISA).Results:Body weight decreased significantly (P <.01),food intake,water intake and urine volume increased significantly (P <.01),and grip strength decreased significantly (P <.01) in the model group compared with the normal group.The levels of FBG,Fins,GHb and HOMA-IR increased significantly (P <.01),and the ISI decreased significantly (P <.01) in the model group.The levels of TG,TC,LDL-C and FFA increased significantly (P <.05 or P <.01),and the level of HDL-C decreased significantly (P <.05) in the model group.These changes were reversed after treatment with YYHQ granule or pioglitazone.Compared with the model group,the YYHQ granule and pioglitazone groups significantly improve body weight,water intake and urine volume (P <.05 or P <.01),however,both treatments had no significant effect on food intake (P >.05).The levels of FBG,Fins,GHb,HOMA-IR and ISI were improved significantly (P <.01) and the levels of TG,TC and LDL-C were improved significantly (P <.05 or P <.01),however,both treatments had no significant effect on the levels of HDL-C and FFA (P >.05).Further results indicated that YYHQ granule significantly decreased the mRNA expression of AMPK,PGC-1α,CPT-1,SIRT1 and SIRT3 in skeletal muscle (P <.01) and the pioglitazone group showed similar effects;moreover,the protein expression levels of CK,Ca2+ATPase,α-Actin,AMPK,PGC-1α and CPT-1 in skeletal muscle significantly decreased (P <.01),however,pioglitazone had no significant effect on CK and α-Actin (P >.05).Conclusion:The possible molecular mechanism of YYHQ granule improving skeletal muscle insulin resistance in a type 2 diabetic rat model may be related to the stimulation of energy metabolism in skeletal muscle via the AMPK/SIRT/PGC-1α signalling pathway.