期刊文献+
共找到166篇文章
< 1 2 9 >
每页显示 20 50 100
Joint modelling of location and scale parameters of the skew-normal distribution 被引量:2
1
作者 LI Hui-qiong WU Liu-cang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第3期265-272,共8页
Joint location and scale models of the skew-normal distribution provide useful ex- tension for joint mean and variance models of the normal distribution when the data set under consideration involves asymmetric outcom... Joint location and scale models of the skew-normal distribution provide useful ex- tension for joint mean and variance models of the normal distribution when the data set under consideration involves asymmetric outcomes. This paper focuses on the maximum likelihood estimation of joint location and scale models of the skew-normal distribution. The proposed procedure can simultaneously estimate parameters in the location model and the scale model. Simulation studies and a real example are used to illustrate the proposed methodologies. 展开更多
关键词 joint mean and variance models of the normal distribution joint location and scale models ofthe skew-normal distribution maximum likelihood estimators skew-normal distribution.
下载PDF
A parametric bootstrap approach for one-way classification model with skew-normal random effects 被引量:2
2
作者 YE Ren-dao XU Li-jun +1 位作者 LUO Kun JIANG Ling 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第4期423-435,共13页
In this paper,several properties of one-way classification model with skew-normal random effects are obtained,such as moment generating function,density function and noncentral skew chi-square distribution,etc.Based o... In this paper,several properties of one-way classification model with skew-normal random effects are obtained,such as moment generating function,density function and noncentral skew chi-square distribution,etc.Based on the EM algorithm,we discuss the maximum likelihood(ML)estimation of unknown parameters.For testing problem of fixed effect,a parametric bootstrap(PB)approach is developed.Finally,some simulation results on the Type I error rates and powers of the PB approach are obtained,which show that the PB approach provides satisfactory performances on the Type I error rates and powers,even for small samples.For illustration,our main results are applied to a real data problem. 展开更多
关键词 PARAMETRIC BOOTSTRAP EM algorithm one-way classification model skew-normal DISTRIBUTION SKEW CHI-SQUARE DISTRIBUTION
下载PDF
Mapping of quantitative trait loci using the skew-normal distribution 被引量:3
3
作者 FERNANDES Elisabete PACHECO António PENHA-GONALVES Carlos 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第11期792-801,共10页
In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use th... In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM. 展开更多
关键词 Interval mapping (IM) Quantitative trait loci (QTL) skew-normal distribution Expectation-maximization (EM)algorithm
下载PDF
Bootstrap inference of the skew-normal two-way classification random effects model with interaction
4
作者 YE Ren-dao AN Na +1 位作者 LUO Kun LIN Ya 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第3期435-452,共18页
In this paper,we consider the statistical inference problems for the fixed effect and variance component functions in the two-way classification random effects model with skewnormal errors.Firstly,the exact test stati... In this paper,we consider the statistical inference problems for the fixed effect and variance component functions in the two-way classification random effects model with skewnormal errors.Firstly,the exact test statistic for the fixed effect is constructed.Secondly,using the Bootstrap approach and generalized approach,the one-sided hypothesis testing and interval estimation problems for the single variance component,the sum and ratio of variance components are discussed respectively.Further,the Monte Carlo simulation results indicate that the exact test statistic performs well in the one-sided hypothesis testing problem for the fixed effect.And the Bootstrap approach is better than the generalized approach in the one-sided hypothesis testing problems for variance component functions in most cases.Finally,the above approaches are applied to the real data examples of the consumer price index and value-added index of three industries to verify their rationality and effectiveness. 展开更多
关键词 skew-normal two-way classification random effects model with interaction fixed effect variance component functions BOOTSTRAP generalized approach
下载PDF
Variable selection for skew-normal mixture of joint location and scale models
5
作者 WU Liu-cang YANG Song-qin TAO Ye 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第4期475-491,共17页
Although there are many papers on variable selection methods based on mean model in the nite mixture of regression models,little work has been done on how to select signi cant explanatory variables in the modeling of ... Although there are many papers on variable selection methods based on mean model in the nite mixture of regression models,little work has been done on how to select signi cant explanatory variables in the modeling of the variance parameter.In this paper,we propose and study a novel class of models:a skew-normal mixture of joint location and scale models to analyze the heteroscedastic skew-normal data coming from a heterogeneous population.The problem of variable selection for the proposed models is considered.In particular,a modi ed Expectation-Maximization(EM)algorithm for estimating the model parameters is developed.The consistency and the oracle property of the penalized estimators is established.Simulation studies are conducted to investigate the nite sample performance of the proposed methodolo-gies.An example is illustrated by the proposed methodologies. 展开更多
关键词 heterogeneous population skew-normal(SN)distribution mixture of joint location and scale models variable selection EM algorithm
下载PDF
Bayesian Inference of Spatially Correlated Binary Data Using Skew-Normal Latent Variables with Application in Tooth Caries Analysis
6
作者 Solaiman Afroughi 《Open Journal of Statistics》 2015年第2期127-139,共13页
The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biolog... The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodology. Assuming a normal distribution for the latent random variable may not be realistic and wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of results and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spatial models. A review of the recent literature in spatial statistics shows that there is an increasing tendency in presenting models that are involving skew distributions, especially skew-normal ones. In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the spatially correlated binary data that were acquired on uncorrelated lattices. The proposed methodology was applied in inspecting spatial dependency and related factors of tooth caries occurrences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results indicated that the skew-normal latent variable model had validity and it made a decent criterion that fitted caries data. 展开更多
关键词 Spatial Data LATENT Variable Autologistic Model skew-normal Distribution BAYESIAN INFERENCE TOOTH CARIES
下载PDF
Variable selection in finite mixture of median regression models using skew-normal distribution
7
作者 Xin Zeng Yuanyuan Ju Liucang Wu 《Statistical Theory and Related Fields》 CSCD 2023年第1期30-48,共19页
A regression model with skew-normal errors provides a useful extension for traditional normal regression models when the data involve asymmetric outcomes.Moreover,data that arise from a heterogeneous population can be... A regression model with skew-normal errors provides a useful extension for traditional normal regression models when the data involve asymmetric outcomes.Moreover,data that arise from a heterogeneous population can be efficiently analysed by a finite mixture of regression models.These observations motivate us to propose a novel finite mixture of median regression model based on a mixture of the skew-normal distributions to explore asymmetrical data from several subpopulations.With the appropriate choice of the tuning parameters,we establish the theoretical properties of the proposed procedure,including consistency for variable selection method and the oracle property in estimation.A productive nonparametric clustering method is applied to select the number of components,and an efficient EM algorithm for numerical computations is developed.Simulation studies and a real data set are used to illustrate the performance of the proposed methodologies. 展开更多
关键词 Variable selection mixture of median regression skew-normal distribution heterogeneous population EM algorithm
原文传递
An Identity for Expectations and Characteristic Function of Matrix Variate Skew-normal Distribution with Applications to Associated Stochastic Orderings
8
作者 Tong Pu Narayanaswamy Balakrishnan Chuancun Yin 《Communications in Mathematics and Statistics》 SCIE CSCD 2023年第3期629-647,共19页
We establish an identity for E f(Y)-E f(X),when X and Y both have matrix variate skew-normal distributions and the function f satisfies some weak conditions.The characteristic function of matrix variate skew normal dis... We establish an identity for E f(Y)-E f(X),when X and Y both have matrix variate skew-normal distributions and the function f satisfies some weak conditions.The characteristic function of matrix variate skew normal distribution is then derived.We then make use of it to derive some necessary and sufficient conditions for the comparison of matrix variate skew-normal distributions under six different orders,such as usual stochastic order,convex order,increasing convex order,upper orthant order,directionally convex order and supermodular order. 展开更多
关键词 Characteristic function Integral order Matrix variate skew-normal distributions Stochastic comparisons
原文传递
Variable Selection in Joint Location, Scale and Skewness Models of the Skew-Normal Distribution 被引量:3
9
作者 LI Huiqiong WU Liucang MA Ting 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第3期694-709,共16页
Variable selection is an important research topic in modern statistics, traditional variable selection methods can only select the mean model and(or) the variance model, and cannot be used to select the joint mean, va... Variable selection is an important research topic in modern statistics, traditional variable selection methods can only select the mean model and(or) the variance model, and cannot be used to select the joint mean, variance and skewness models. In this paper, the authors propose the joint location, scale and skewness models when the data set under consideration involves asymmetric outcomes,and consider the problem of variable selection for our proposed models. Based on an efficient unified penalized likelihood method, the consistency and the oracle property of the penalized estimators are established. The authors develop the variable selection procedure for the proposed joint models, which can efficiently simultaneously estimate and select important variables in location model, scale model and skewness model. Simulation studies and body mass index data analysis are presented to illustrate the proposed methods. 展开更多
关键词 Joint location scale and skewness models penalized maximum likelihood estimation skew-normal distribution variable selection.
原文传递
The ANOVA-Type Inference in Linear Mixed Model with Skew-Normal Error 被引量:1
10
作者 WU Mixia ZHAO Jing +1 位作者 WANG Tonghui ZHAO Yan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第3期710-720,共11页
Linear mixed effect models with skew-normal errors and distribution-free random effects are considered. The ANOVA-type F-tests are proposed to test the significance of random effects and the hypothesis on fixed effect... Linear mixed effect models with skew-normal errors and distribution-free random effects are considered. The ANOVA-type F-tests are proposed to test the significance of random effects and the hypothesis on fixed effects of interest, respectively. Both tests are proved to be exact F-tests under this model, and the exact confidence interval for fixed effects of interest is derived. Simulation results are given to study the powers of ANOVA-type tests. 展开更多
关键词 ANOVA-type estimator ANOVA-type F-test skew-normal error.
原文传递
A Variant Modified Skew-Normal Splitting Iterative Method for Non-Hermitian Positive Definite Linear Systems
11
作者 Rui Li Jun-Feng Yin Zhi-Lin Li 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2022年第2期510-529,共20页
We propose a variant modified skew-normal splitting iterative method to solve a class of large sparse non-Hermitian positive definite linear systems.Applying the preconditioning technique we also construct the precond... We propose a variant modified skew-normal splitting iterative method to solve a class of large sparse non-Hermitian positive definite linear systems.Applying the preconditioning technique we also construct the preconditioned version of the proposed method.Theoretical analysis shows that the proposed method is unconditionally convergent even when the real part and the imaginary part of the coefficient matrix are non-symmetric.Meanwhile,when the real part and the imaginary part of the coefficient matrix are symmetric positive definite,we prove that the preconditioned variant modified skew-normal splitting iterative method will also unconditionally converge.Numerical experiments are presented to illustrate the efficiency of the proposed method and show better performance of it when compared with some other methods. 展开更多
关键词 Non-Hermitian matrix skew-normal splitting PRECONDITION complex linear system
原文传递
偏正态条件下多元线性回归模型的统计推断及其应用
12
作者 赵伟凯 杨兰军 +1 位作者 戴琳 吴刘仓 《应用数学》 北大核心 2024年第2期519-529,共11页
本文考虑带偏正态随机项多元线性回归模型的统计推断问题.基于最大似然方法,本文所做的工作如下:1)证明了参数最大似然估计在n≥p+1条件下以概率1存在唯一;2)在唯一性条件下给出参数估计的一致性结论;3)在一致性的条件下研究了参数的渐... 本文考虑带偏正态随机项多元线性回归模型的统计推断问题.基于最大似然方法,本文所做的工作如下:1)证明了参数最大似然估计在n≥p+1条件下以概率1存在唯一;2)在唯一性条件下给出参数估计的一致性结论;3)在一致性的条件下研究了参数的渐近性质,给出参数的渐近分布.最后通过数值模拟说明了所提理论和方法的有效性.实例表明模型参数估计的渐近分布具有实际意义. 展开更多
关键词 偏正态分布 多元线性模型 最大似然估计 渐近正态性
下载PDF
带有偏正态误差的众数回归模型最大似然估计的EM算法
13
作者 姜喆 王丹璐 吴刘仓 《高校应用数学学报(A辑)》 北大核心 2024年第2期141-151,共11页
经典的多元线性回归模型要求残差满足高斯-马尔柯夫假设(G-M),在实际生活中由于数据的随机性往往很难满足这个条件.利用Sahu等在2003年提出的偏正态分布来拓展经典的回归模型,给出了偏正态分布众数的近似表达式,建立了偏正态分布下均值... 经典的多元线性回归模型要求残差满足高斯-马尔柯夫假设(G-M),在实际生活中由于数据的随机性往往很难满足这个条件.利用Sahu等在2003年提出的偏正态分布来拓展经典的回归模型,给出了偏正态分布众数的近似表达式,建立了偏正态分布下均值和众数多元线性回归模型.在求解模型的参数估计时使用偏正态分布的分层表示构造EM算法.在M步统一给出两点步长梯度下降算法,同时也对均值模型给出显示迭代表达式.最后通过模拟分析以及实例来讨论两种回归模型的可行性. 展开更多
关键词 偏正态分布 众数回归模型 均值回归模型 高斯-马尔柯夫假设 EM算法
下载PDF
装配式斜转正桥梁结构受力分析
14
作者 朱爱东 《工程技术研究》 2024年第1期18-20,共3页
受桥下道路条件及经济因素影响,斜转正桥梁的应用越来越广泛。斜转正桥梁同一跨各片梁的长度差异较大,通常受到弯扭耦合作用,受力情况比正交桥梁复杂得多,进行桥梁设计时需要分析每片梁的受力情况。文章以广东某高速公路项目为背景,针... 受桥下道路条件及经济因素影响,斜转正桥梁的应用越来越广泛。斜转正桥梁同一跨各片梁的长度差异较大,通常受到弯扭耦合作用,受力情况比正交桥梁复杂得多,进行桥梁设计时需要分析每片梁的受力情况。文章以广东某高速公路项目为背景,针对高速公路装配式斜转正桥梁建立梁格模型进行受力分析,进而指导斜转正桥梁设计,通过实际项目案例验证装配式斜转正桥梁在高速公路建设中的可行性,旨在为今后类似项目提供参考。 展开更多
关键词 斜转正桥梁 梁格法 有限元分析
下载PDF
Median-of-Means方法在偏度系数中的应用
15
作者 刘鹏飞 杨文婷 +1 位作者 张茹 周勤 《统计研究》 CSSCI 北大核心 2024年第4期153-160,共8页
传统偏度系数的定义涉及样本均值和三阶矩,使其对离群值十分敏感。本文在偏度系数的估计中引入Median-of-Means方法,提出偏度系数的新估计量,并证明其相合性和渐近正态性。此外,基于经验似然方法提出一种新的偏度系数检验统计量,证明其... 传统偏度系数的定义涉及样本均值和三阶矩,使其对离群值十分敏感。本文在偏度系数的估计中引入Median-of-Means方法,提出偏度系数的新估计量,并证明其相合性和渐近正态性。此外,基于经验似然方法提出一种新的偏度系数检验统计量,证明其渐近性质并进行数值模拟。结果表明,本文提出的估计量具有一定稳健性,检验统计量表现也优于传统方法。最后将所提出的估计与检验方法应用于实际数据分析发现,估计结果比较稳健,进一步表明原有的偏度系数估计方法并不适用。 展开更多
关键词 偏度系数 Median-of-Means 经验似然 渐近正态性 数值模拟
下载PDF
偏正态混合效应模型中方差分量函数的参数Bootstrap推断
16
作者 叶仁道 安娜 《应用数学》 北大核心 2023年第2期353-363,共11页
偏正态混合效应模型通过引入偏度参数,以便更好地刻画实际数据偏态特征,所以被广泛应用于众多实际领域.进一步,方差分量的假设检验一直是该模型的热点研究问题.因此,有必要在偏正态分布下系统讨论混合效应模型中方差分量函数的统计推断... 偏正态混合效应模型通过引入偏度参数,以便更好地刻画实际数据偏态特征,所以被广泛应用于众多实际领域.进一步,方差分量的假设检验一直是该模型的热点研究问题.因此,有必要在偏正态分布下系统讨论混合效应模型中方差分量函数的统计推断问题.首先,分别基于参数Bootstrap方法和广义方法探讨单个方差分量、方差分量之和、方差分量之比的单边假设检验和区间估计问题.其次,Monte Carlo结果表明,在所给样本量和参数设置下,参数Bootstrap方法大多数情况下优于广义方法.最后,将上述方法应用于空气质量指数的案例研究中,以验证所给方法的合理性与有效性. 展开更多
关键词 偏正态混合效应模型 方差分量函数 BOOTSTRAP 广义方法
下载PDF
基于混合偏正态数据下众数回归模型的变量选择 被引量:1
17
作者 曾鑫 吴刘仓 句媛媛 《工程数学学报》 CSCD 北大核心 2023年第3期381-397,共17页
有限混合回归(Finite Mixture of Regression,FMR)模型的变量选择常常在统计建模中使用。目前关于FMR模型的研究主要集中在回归误差服从正态分布的情形,而这种假设不适用于研究非对称的数据。对于偏斜数据,众数的代表性优于均值。本文... 有限混合回归(Finite Mixture of Regression,FMR)模型的变量选择常常在统计建模中使用。目前关于FMR模型的研究主要集中在回归误差服从正态分布的情形,而这种假设不适用于研究非对称的数据。对于偏斜数据,众数的代表性优于均值。本文基于混合偏正态数据介绍了众数回归模型的变量选择方法,并证明了变量选择方法的相合性和参数估计的Oracle性质。为了估计模型的参数,提出了一种改进的EM(Expectation-Maximum)算法,通过模拟研究和实例分析进一步说明了所提出模型和变量选择方法的有效性。 展开更多
关键词 混合偏正态数据 众数回归模型 变量选择 EM算法
下载PDF
响应变量随机缺失下偏正态众数混合专家模型的参数估计 被引量:1
18
作者 鲁钰 吴刘仓 王格格 《应用数学》 北大核心 2023年第2期474-486,共13页
数据缺失是众多影响数据质量的因素中最常见的一种.若缺失数据处理不当,将直接影响分析结果的可靠性,进而达不到分析的目的.本文针对随机缺失偏正态数据,研究了偏正态众数混合专家模型的参数估计.将众数回归插补与聚类相结合,提出分层... 数据缺失是众多影响数据质量的因素中最常见的一种.若缺失数据处理不当,将直接影响分析结果的可靠性,进而达不到分析的目的.本文针对随机缺失偏正态数据,研究了偏正态众数混合专家模型的参数估计.将众数回归插补与聚类相结合,提出分层众数回归插补方法.利用机器学习插补和统计学插补的方法,进一步比较研究三种机器学习插补方法:支持向量机插补、随机森林插补和神经网络插补,三种统计学插补方法:分层均值插补、众数回归插补和分层众数回归插补的缺失数据处理效果.通过Monte Carlo模拟和实例分析结果表明,分层众数回归插补的优良性. 展开更多
关键词 缺失偏正态数据 众数混合专家模型 支持向量机插补 随机森林插补 BP神经网络插补 分层众数回归插补
下载PDF
基于偏正态混合模型的齿轮故障分类
19
作者 毛锦进 肖涵 +1 位作者 易灿灿 鲁志文 《组合机床与自动化加工技术》 北大核心 2023年第3期104-108,共5页
工业现场的振动信号往往混杂有较大的噪音,且表征故障状态的数据量偏少,导致设备状态特征提取困难,识别效果差。统计学习从概率密度角度建立状态数据的模型,对数据量的要求相对较小,对于噪音具有较好的鲁棒性,但对概率密度函数的合理性... 工业现场的振动信号往往混杂有较大的噪音,且表征故障状态的数据量偏少,导致设备状态特征提取困难,识别效果差。统计学习从概率密度角度建立状态数据的模型,对数据量的要求相对较小,对于噪音具有较好的鲁棒性,但对概率密度函数的合理性与准确性要求较高。首先,分析了偏正态混合模型对于真实偏斜数据的优良拟合性能,并将其拓展到分类应用中,并提出了偏正态混合模型与去趋势波动分析相结合的齿轮故障分类方法,该方法利用了齿轮振动信号的双标度特性和偏正态混合模型描述具有非对称结构的概率密度分布的能力,因此具有更好的柔性。齿轮故障实测实验得到混淆矩阵的四种分类指标,与基于高斯混合模型和概率神经网络分类算法相比,具有更好的分类效果,这表明了所提出的方法的有效性。 展开更多
关键词 偏正态混合模型 趋势波动分析 去趋势波动分析 概率神经网络 混淆矩阵
下载PDF
动态二元偏正态分布的尾相依函数
20
作者 王志花 彭作祥 《西南师范大学学报(自然科学版)》 CAS 2023年第5期42-46,共5页
基于二元正态分布在Hüsler-Reiss条件下有关尾相依函数的研究,再结合二元偏正态相关性质的研究及其尾相依系数的推导,给出了动态二元偏正态分布的在偏度参数大于零和小于零情况下的尾相依函数.
关键词 尾相依函数 尾相依系数 动态二元偏正态分布
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部