期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SL-LDA的领域标签获取方法 被引量:2
1
作者 王胜 张仰森 +2 位作者 张雯 蒋玉茹 张睿 《计算机科学》 CSCD 北大核心 2020年第11期95-100,共6页
科学技术的发展为文献及学者的管理提出了新的挑战,为解决海量科技文献及学者的自动管理,文中提出了一种基于SL-LDA的领域标签获取方法。在海量科技文献的基础上,分析科技文献数据的分布特点,通过引入科技文献的词频特征构建了SL-LDA主... 科学技术的发展为文献及学者的管理提出了新的挑战,为解决海量科技文献及学者的自动管理,文中提出了一种基于SL-LDA的领域标签获取方法。在海量科技文献的基础上,分析科技文献数据的分布特点,通过引入科技文献的词频特征构建了SL-LDA主题模型,利用该主题模型对同一学者的科技文献进行"主题-短语"抽取,获得初始领域关键词。接着引入领域体系,对主题模型的抽取结果与体系标签进行向量表征,经过位置特征加权后使用相似度进行体系映射,最终获得学者的领域标签。实验结果表明,在同样的文献数据量下,SL-LDA模型与传统的LDA模型、基于统计的TFIDF算法和基于网络图的Text-Rank算法相比,最终获取的标签词效果更好,准确率更高,F1值也提升到0.572,说明基于SL-LDA的领域标签抽取方法在学术领域具有较好的适用性。 展开更多
关键词 领域标签 sl-lda模型 标签映射 主题短语抽取 科技文献
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部