目前,将分割网络与SLAM(Simultaneous Localization and Mapping)结合已成为解决视觉SLAM不能应用于动态环境的主流方案之一,但是SLAM系统受到分割网络处理速度的限制,无法保证实时运行.为此,文中提出基于延迟语义的RGB-D SLAM算法.首先...目前,将分割网络与SLAM(Simultaneous Localization and Mapping)结合已成为解决视觉SLAM不能应用于动态环境的主流方案之一,但是SLAM系统受到分割网络处理速度的限制,无法保证实时运行.为此,文中提出基于延迟语义的RGB-D SLAM算法.首先,并行运行跟踪线程与分割线程,为了得到最新的延迟语义信息,采取跨帧分割的策略处理图像,跟踪线程根据延迟语义信息实时生成当前帧的语义信息.然后,结合成功跟踪计数(STC)与极线约束,筛选当前帧动态点的集合,并确定环境中先验动态物体的真实运动状态.若确定该物体在移动,继续将物体区域细分为矩形网格,以网格为最小单位剔除动态特征点.最后,利用静态特征点追踪相机位姿并构建环境地图.在TUM RGB-D动态场景数据集及真实场景上的实验表明文中算法在大部分数据集上表现较优,由此验证算法的有效性.展开更多
为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rot...为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rotated BRIEF,ORB)来提高即时定位与地图构建(simultaneous localization and mapping,SLAM)效率,缩短特征点匹配时间,改善对外界环境的感知效果并提升船舶自身位姿估计精度。采用2020年南宁海事局执法船进港和靠泊期间由单目相机拍摄的视频数据进行实例验证。结果表明,提出的算法比传统SLAM算法的运行耗时更少,与传统定位设备输出轨迹的偏差较小,可为船舶全面立体感知海上航行环境提供研究基础。展开更多
文摘为降低视觉设备感知航行环境时,水面光照反射对船舶位姿估计和环境地图重构的影响,在HSV(hue,saturation,value)颜色空间下,采用K均值聚类算法对近岸航行环境图像进行聚类分割处理。改进快速特征点提取和描述算法(oriented FAST and rotated BRIEF,ORB)来提高即时定位与地图构建(simultaneous localization and mapping,SLAM)效率,缩短特征点匹配时间,改善对外界环境的感知效果并提升船舶自身位姿估计精度。采用2020年南宁海事局执法船进港和靠泊期间由单目相机拍摄的视频数据进行实例验证。结果表明,提出的算法比传统SLAM算法的运行耗时更少,与传统定位设备输出轨迹的偏差较小,可为船舶全面立体感知海上航行环境提供研究基础。