期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
AccSMBO:一种基于超参梯度和元学习的SMBO加速算法
被引量:
1
1
作者
程大宁
张汉平
+3 位作者
夏粉
李士刚
袁良
张云泉
《计算机研究与发展》
EI
CSCD
北大核心
2020年第12期2596-2609,共14页
为了利用最佳超参高概率范围和超参梯度,提出了加速的序列模型优化算法(sequential model-based optimization algorithms,SMBO)——AccSMBO算法.AccSMBO使用了具有良好抗噪能力的基于梯度的多核高斯过程回归方法,利用元学习数据集的met...
为了利用最佳超参高概率范围和超参梯度,提出了加速的序列模型优化算法(sequential model-based optimization algorithms,SMBO)——AccSMBO算法.AccSMBO使用了具有良好抗噪能力的基于梯度的多核高斯过程回归方法,利用元学习数据集的meta-acquisition函数.AccSMBO自然对应的并行算法则使用了基于元学习数据集的并行算法资源调度方案.基于梯度的多核高斯过程回归可以避免超参梯度噪音对拟合高斯过程的影响,加快构建较好超参效果模型的速度.meta-acquisition函数通过读取元学习数据集,总结最佳超参高概率范围,加快最优超参搜索.在AccSMBO自然对应的并行算法中,并行资源调度方法使更多的并行计算资源用于计算最佳超参高概率范围中的超参,更快探索最佳超参高概率范围.上述3个技术充分利用超参梯度和最佳超参高概率范围加速SMBO算法.在实验中,相比于基于传统的SMBO算法实现的SMAC(sequential model-based algorithm configuration)算法、基于梯度下降的HOAG(hyperparameter optimization with approximate gradient)算法和常用的随机搜索算法,AccSMBO使用最少的资源找到了效果最好的超参.
展开更多
关键词
AutoML技术
smbo算法
黑箱调优
算法
超参梯度
元学习
并行资源调度
下载PDF
职称材料
题名
AccSMBO:一种基于超参梯度和元学习的SMBO加速算法
被引量:
1
1
作者
程大宁
张汉平
夏粉
李士刚
袁良
张云泉
机构
中国科学院大学
中国科学院计算技术研究所
智铀科技有限公司
苏黎世理工大学
纽约州立大学布法罗分校
出处
《计算机研究与发展》
EI
CSCD
北大核心
2020年第12期2596-2609,共14页
基金
国家自然科学基金项目(61432018,61521092,61272136,61521092,61502450)
国家重点研发计划项目(2016YFB0200803)
北京自然科学基金项目(L1802053)。
文摘
为了利用最佳超参高概率范围和超参梯度,提出了加速的序列模型优化算法(sequential model-based optimization algorithms,SMBO)——AccSMBO算法.AccSMBO使用了具有良好抗噪能力的基于梯度的多核高斯过程回归方法,利用元学习数据集的meta-acquisition函数.AccSMBO自然对应的并行算法则使用了基于元学习数据集的并行算法资源调度方案.基于梯度的多核高斯过程回归可以避免超参梯度噪音对拟合高斯过程的影响,加快构建较好超参效果模型的速度.meta-acquisition函数通过读取元学习数据集,总结最佳超参高概率范围,加快最优超参搜索.在AccSMBO自然对应的并行算法中,并行资源调度方法使更多的并行计算资源用于计算最佳超参高概率范围中的超参,更快探索最佳超参高概率范围.上述3个技术充分利用超参梯度和最佳超参高概率范围加速SMBO算法.在实验中,相比于基于传统的SMBO算法实现的SMAC(sequential model-based algorithm configuration)算法、基于梯度下降的HOAG(hyperparameter optimization with approximate gradient)算法和常用的随机搜索算法,AccSMBO使用最少的资源找到了效果最好的超参.
关键词
AutoML技术
smbo算法
黑箱调优
算法
超参梯度
元学习
并行资源调度
Keywords
AutoML
smbo
black box optimization
hypergradient
metalearning
parallel resource allocation
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
TP302.7 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
AccSMBO:一种基于超参梯度和元学习的SMBO加速算法
程大宁
张汉平
夏粉
李士刚
袁良
张云泉
《计算机研究与发展》
EI
CSCD
北大核心
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部