期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Progress of Solar Wind Magnetosphere Ionosphere Link Explorer(SMILE) Mission 被引量:16
1
作者 WANG Chi BRANDUARDI-RAYMOND Graziella 《空间科学学报》 CAS CSCD 北大核心 2018年第5期657-661,共5页
SMILE(Solar wind Magnetosphere Ionosphere Link Explorer) mission is a joint ESA-CAS space science project. The working orbit is a 19 Re 5000 km HEO with 4 scientific instruments: Soft X-ray Imager(SXI), Ultra-Violet I... SMILE(Solar wind Magnetosphere Ionosphere Link Explorer) mission is a joint ESA-CAS space science project. The working orbit is a 19 Re 5000 km HEO with 4 scientific instruments: Soft X-ray Imager(SXI), Ultra-Violet Imager(UVI), Magnetometer(MAG) and Light Ion Analyzer(LIA). SMILE aims to understand the interaction between the solar wind and the Earth's magnetosphere through the images of SXI and UVI and in-situ measurement from LIA and MAG. After the kick-off in 2016, the SMILE project went to Phase A study. The mission adoption is scheduled for November 2018, with a target launch date in 2022–2023.In this paper, the background of the mission, scientific objectives, the design and characteristics of scientific instruments and the mission outline will be introduced in details. 展开更多
关键词 磁气圈 电离层 太阳 连接 科学工程 科学仪器 离子分析器 smile
下载PDF
Deformations at Earth’s dayside magnetopause during quasi-radial IMF conditions:Global kinetic simulations and Soft X-ray Imaging 被引量:2
2
作者 ZhongWei Yang RiKu Jarvinen +7 位作者 XiaoCheng Guo TianRan Sun Dimitra Koutroumpa George K.Parks Can Huang BinBin Tang QuanMing Lu Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期59-69,共11页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Eart... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Earth's magnetosphere to the solar wind(SW)impact via simultaneous in situ magnetosheath plasma and magnetic field measurements,X-Ray images of the magnetosheath and magnetic cusps,and UV images of global auroral distributions.Magnetopause deformations associated with magnetosheath high speed jets(HSJs)under a quasi-parallel interplanetary magnetic field condition are studied using a threedimensional(3-D)global hybrid simulation.Soft X-ray intensity calculated based on both physical quantities of solar wind proton and oxygen ions is compared.We obtain key findings concerning deformations at the magnetopause:(1)Magnetopause deformations are highly coherent with the magnetosheath HSJs generated at the quasi-parallel region of the bow shock,(2)X-ray intensities estimated using solar wind h+and self-consistentO7+ions are consistent with each other,(3)Visual spacecraft are employed to check the discrimination ability for capturing magnetopause deformations on Lunar and polar orbits,respectively.The SMILE spacecraft on the polar orbit could be expected to provide opportunities for capturing the global geometry of the magnetopause in the equatorial plane.A striking point is that SMILE has the potential to capture small-scale magnetopause deformations and magnetosheath transients,such as HSJs,at medium altitudes on its orbit.Simulation results also demonstrate that a lunar based imager(e.g.,Lunar Environment heliospheric X-ray Imager,LEXI)is expected to observe a localized brightening of the magnetosheath during HSJ events in the meridian plane.These preliminary results might contribute to the pre-studies for the SMILE and LEXI missions by providing qualitative and quantitative soft X-ray estimates of dayside kinetic processes. 展开更多
关键词 collisionless shock smile mission FORESHOCK
下载PDF
A new inversion method for reconstruction of plasmaspheric He^(+)density from EUV images 被引量:3
3
作者 Ya Huang Lei Dai +2 位作者 Chi Wang RongLan Xu Liang Li 《Earth and Planetary Physics》 CSCD 2021年第2期218-222,共5页
The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we... The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we apply the Algebraic Reconstruction Technique(ART)and the minimization of the image Total Variation(TV)method,with a combination of priori knowledge of north–south symmetry,to reconstruct plasmaspheric He+density from simulated EUV images.The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient.This method has good performance even with a projection angle of less than 150 degrees.The method of our study is expected to have applications in the Soft X-ray Imager(SXI)reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer(SMILE)mission. 展开更多
关键词 Earth plasmasphere He+density algebraic reconstruction technique image total variation north–south symmetry SXI image reconstruction smile mission
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部