期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合注意力机制和编码器—解码器架构的化学结构识别方法
1
作者 曾水玲 李昭贤 +2 位作者 张嘉雄 丁龙飞 赵才荣 《中国图象图形学报》 CSCD 北大核心 2024年第7期1960-1969,共10页
目的 化学结构识别是化学和计算机视觉领域的一个重要问题,传统光学化学结构识别技术在复杂化学结构识别任务中易发生信息丢失或误识别的现象,同时又因为化学物质的结构多样性常导致其无法解析,识别效果不佳。而基于深度学习的模型通常... 目的 化学结构识别是化学和计算机视觉领域的一个重要问题,传统光学化学结构识别技术在复杂化学结构识别任务中易发生信息丢失或误识别的现象,同时又因为化学物质的结构多样性常导致其无法解析,识别效果不佳。而基于深度学习的模型通常具有网络结构复杂度高、上下文信息易丢失和识别率低的问题。为此,提出一种结合注意力机制和编码器—解码器架构的化学结构识别方法。方法 首先,使用改进的ResNet50(residual network)作为特征提取器抓取表征信息;其次,使用BLSTM(bi-directional long-short term memory)作为行编码器为ResNet50提取的表征信息加强空间信息;最后,使用去填充模块和基于覆盖注意力机制的LSTM(long short-term memory)网络作为模型解码器,对化学结构图像进行解码,将编码结果解码为SMILES(simplified molecular input line entry system)序列。结果 在Indigo、ChemDraw、CLEF(Conference and Labs of the Evaluation Forum)、JPO(Japanese Patent Office)、UOB(University of Birmingham)、USPTO(United States Patent and Trademark Office)、Staker、ACS(American Chemistry Society)、CASIA-CSDB(Institute of Automation of Chinese Academy of Sciences—Chemical Structure Database)和Mini CASIA-CSDB数据集上,所提方法识别准确率分别为71.1%、70.21%、45.8%、30.3%、53.02%、58.21%、43.39%、46.3%、84.42%和85.78%,高于SwimOCSR、Image2Mol和ChemPix模型得分。结论 与其他模型相比,本文方法通过少量训练集能够获得较高的识别准确率。 展开更多
关键词 化学结构识别 编码器—解码器 注意力机制 残差网络 smiles(simplified molecular input line entry system)
原文传递
药物表示学习研究进展 被引量:3
2
作者 陈鑫 刘喜恩 吴及 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第2期171-180,共10页
药物开发过程存在资本密度高、风险大、周期长的特点,需要投入大量的资金、人力与物力。传统的机器学习方法虽然可以在一定程度上辅助药物开发,但需要分子描述符作为特征输入,而不同的分子描述符的选择对机器学习模型的性能影响较大,因... 药物开发过程存在资本密度高、风险大、周期长的特点,需要投入大量的资金、人力与物力。传统的机器学习方法虽然可以在一定程度上辅助药物开发,但需要分子描述符作为特征输入,而不同的分子描述符的选择对机器学习模型的性能影响较大,因此传统的机器学习方法大多需要进行繁复、耗时的特征工程。近年新兴的深度学习方法,能够从药物的"原始"结构中直接提取特征,从而绕开特征工程,缩短开发周期。该文将现有的药物表示学习方法划分为2类:基于简化分子线性输入规范(SMILES)表达式的药物表示学习和基于分子图的药物表示学习,报告了这两类药物表示学习方法的最新研究进展,阐述了各种方法的创新点与局限性。最后,指出了当前药物表示学习研究中存在的重大挑战,并讨论了可能的解决方案。 展开更多
关键词 药物 表示学习 简化分子线性输入规范(smiles) 分子图
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部